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254 F.HYNNE AND R.K.BULLOUGH

We calculate the external incoherent scattering from a finite molecular fluid exposed
to a weak, external, coherent electromagnetic field. The scattered field is detected
outside the fluid and the system models a real scattering experiment in all its aspects.
The analysis is based on a classical all order many-body theory developed in two
previous papers. The theory is mMicroscopic, i.e. is developed ab initio and in detail in
terms of individual scattering processes in vacuo at a strictly molecular level. But it is
shown that the collective action of these generates all of the macroscopic features
expected in the external scattering: for example, the refractive index, as it was
calculated previously from the many-body theory, plays much of its expected
macroscopic role.

These macroscopic results are reached by showing that the complete scattering
process (from a wave incident iz vacuo on the fluid to a wave in vacuo scattered from
the fluid) separates into three independent collective processes compactly described
by a particular quadrilinear form quadratic in a field & induced in the fluid by any
coherent external field, and quadratic in a ‘weight’ field ¢ describing the scattered
field in the fluid. The internal fields & and & couple separately to the external
incoming field and to one representing the external scattered field respectively. In
each case they account for all collective surface effects. The kernel of the quadrilinear
form accounts for all of the internal scattering processes in the fluid.

The weight field ¢ and the equations associated with it describe refraction and
(multiple) internal reflection of the scattered light at the surface of the medium in all
details: these collective surface effects are managed in a very effective way through
a new reciprocity principle derived from the microscopic theory and containing a
new form of optical extinction theorem for external scattering. The kernel of the
quadrilinear form for internal scattering has a natural expansion describing
macroscopic single and macroscopic multiple scattering agreeing with phenom-
enological ideas. The expansion is derived from a relation between the weight field
and a propagator for the scattered wave.

We show that macroscopic single scattering contains processes displaying ‘back-
scattering coherence’. This phenomenon has not been recognized in molecular
scattering theory before, and back-scattering enhancement very much like that
recently observed in scattering from suspensions of dielectric particles, should be
observable near a critical point of phase separation.

We give explicit formulae for macroscopic single scattering from a dilute gas up to
two-body contributions with intermolecular correlations determined by a Lennard-
Jones potential. We also show how Einstein’s phenomenological single scattering
formula can be derived from certain microscopic scattering processes of all orders.
With a minor qualification the formula is valid in a generalized form up to neglect
of terms of order six in the polarizability per unit volume.
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SE 1. INTRODUCTION

e 5 The present paper reports a theory of external light scattering; it is the final part of a series of

= Q) three papers presenting a classical many-body theory of the optics of molecular fluids. The

E ©) foundation of the unified theory was laid in the first paper (Hynne & Bullough 1984, to be
v

referred to as part I) in which the problem of the response of a molecular fluid to light was
solved. The second paper (Hynne & Bullough 1987, to be referred to as part II) and the
present one treat the theories of the complex refractive index and of external light scattering
respectively. In part I we demonstrated a close relation between these two theories. We shall
utilize this relation here, but the present paper can be read independently of part IT; it depends
on part I in so far as it starts from results derived there, but otherwise it can be read
independently by appealing to the review given in §2 below.
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THE SCATTERING OF LIGHT. III 255

Systematic study of light scattering goes back at least to Tyndall (1869) and its theory to the
single-particle work of Rayleigh (1899, 1918) and Cabannes (1921). Smoluchowski (19o8)
and Einstein (1910) pointed out the significance of fluctuations as a source of light scattering
(ideas extended to account for intermolecular correlations in critical opalescence by Ornstein &
Zernicke (1914, 1918) and Debye (1959)). Interesting relevant material is in van de Hulst
(1957), Landau & Lifshitz (1958) and Chu (1967). We also cite McIntyre & Gormick (1964),
Frisch & McKenna (1965), Mountain (1966), Kerker (1963), Rowell & Stein (1967),
Cummings & Swinney (1970) and the many hundreds of references in, for example, Cummings
& Pike (1974) as some indication of the different further developments of the subject.

Light scattering was first treated on a strictly molecular level by Yvon (1937) in a pioneering
paper. The molecular theory was given a new point of view by Hoek (1939) and the molecular
theory was then developed in different ways by Rosenfeld (1951), Lax (1951), Fixman (1955),
Benoit & Stockmayer (1956), Buckingham & Stephen (1957), Mazur (1958), Kielich (1960,
1963, 1964), Bullough (1962, 1965, 1967), Theimer & Paul (1965), Fulton (1969), Boots
et al. (19754, b, 1976), Hynne (1977, 1980, 19874, b), Hynne & Bullough (1982) and many
others.

Inelastic scattering was first observed in fluids by Gross (1930) after Brillouin’s (1922)
prediction, and the central component of the (translational Raman) spectrum was subsequently
explained by Landau & Placzek (1934). With the advent . of the laser finer details of the
spectrum of scattered light have become accessible and have been treated theoretically by
Komarov & Fisher (1963), Pecora (1964), Pecora & Steele (1965), Mountain (1966), Tanaka
(1968) and Crosignani et al. (1975), among others. Some of this work is already referenced
above.

These theories are all theories of ‘spontaneous’ inelastic (or elastic) scattering in the sense
introduced by Chiao (1969) (and references by Hopf & Stegeman (1986)). Chiao (1969) then
extended to ‘stimulated’ Raman, Brillouin and other scattering (cf. also Hopf & Stegeman
1986, ch. 20). Here the intensity of the incoming wave plays a fundamental and quantitative
role. More generally we refer to relatively simple descriptions of atom or molecule based
theories in the very rich and active field of nonlinear optics in Louisell (1964), Chiao (1969),
Kaiser & Mailer (1972), Sargent et al. (1974), Yariv (1975), Shen (1984) and Hopf &
Stegeman (1986). For light scattering concerned with, for example, non-classical effects in
resonance fluorescence we refer to Mollow (1969) and Buckingham et al. (1979). For related
problems associated with transmission of light including self-induced transparency, optical
bistability (and the role of the optical extinction theorem there) and the squeezing of light see,
for example, Bullough (1971, 1977, 1988) and references therein.

Nevertheless the simpler case of linear elastic external light scattering is experimentally
realizable and important; and the problem of constructing a fundamental unified many-body
theoretical description of it ab initio in classical terms is already enormously complicated. A
problem is that the scattering has a strong and complex dependence on the geometry of the
scattering sample. Even the simple definition of a valid molecular scattermg cross-section offers
problems because the scattering is intrinsically non-local.

Solution of the many-body problem with the associated surface effects in the simple (linear,
etc.) case therefore applies to an important class of physical phenomena and is a significant
(even necessary) step towards a more complete many-body theoretical treatment involving, for
example, nonlinear processes. In this paper we therefore complete the task of providing a

21-2
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256 F.HYNNE AND R. K.BULLOUGH

theory of linear elastic external optical scattering consistent with the refractive index and
dielectric theory developed in parts I and II so far. Our aim is to construct (as theory actually
dictates) a complete description of a real scattering experiment.

The existence of surface-dependent terms in any such microscopic theory of optical
scattering was recognized already by Yvon (1937). Although he did not manage to handle
them, he introduced important physical ideas partly to circumvent the problem. Otherwise,
surface dependence has been largely ignored in most relevant work on light scattering even
though surface dependence in the form of bulk refraction and reflection (at least) has to be
intrinsic to the theory.

The existence and importance of surface effects has been emphasized in our work from the
beginning (Bullough 1962, 1965, 1967; Bullough ¢t al. 1968; Bullough & Hynne 1968) and
the problem of deriving techniques to handle the surface terms and to understand their
significance has gradually been solved completely (Hynne 1970, 1975, 1977, 1980, 19874, b;
Hynne & Bullough 1972, 1982). We can now present a synthesis of the various parts of the
solution.

The surface problem is a complicated one because there are really four separate surface
problems to be solved. One is associated with refraction and reflection of scattered light at the
surface of the fluid; another one is associated with macroscopic multiple scattering; a third one
is related to back-scattering coherence; and a fourth more technical one remains in
‘intermediate propagation in the medium’.

This means that to handle the surface dependence in a meaningful way at the microscopic
level we have to transform light scattering in these terms to one in terms of concepts of
macroscopic significance: refraction, reflection, macroscopic multiple scattering and back-
scattering. In any such microscopic approach to the theory of light scattering all the
macroscopic effects just mentioned are obliged to make their appearance. But they emerge first
of all mingled with each other and with local scattering in forms which in no way represent
their macroscopic significance.

It is the purpose of the present paper to show that the complete scattering process from an
incoming wave in vacuum to a scattered wave in vacuum can be decomposed into well defined
parts, which can be understood in these macroscopic terms, and that on this basis it is possible
to treat all of the geometrical features of external light scattering.

It may be helpful if we briefly indicate how this analysis is achieved. The decomposition is
based on a number of relations between ‘propagators’. It is justified by the physical contents
of these relations and is further supported by the uniformity and simplicity of the expressions
and their natural relation to the refractive index theory.

The basic relations were derived in the paper I, and we shall summarize these relations and
explain their meaning in §2. We consider the complete scattering process from an incoming
wave in vacuum to a scattered wave in vacuum, and in §3 we show how this can be divided
into three processes. We first separate it into a scattering process in the medium and the two
transitions in and out of the medium at the beginning and end of the scattering process. We
then show how the scattering process in the medium can be further analysed into an infinite
series of multiple-scattering processes. In this way we may describe macroscopic multiple
scattering in the medium in terms of macroscopic single scattering in the medium. In the course
of explaining the decomposition of the scattering in §3 we shall indicate the role the various
objects will come to play in the developments of the later sections, and in this way we provide
an overview of the whole paper and a preparation for the detailed discussions to come.
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THE SCATTERING OF LIGHT. III 257

So §3 already serves the purpose of outlining the argument of the paper, and we need only
indicate here the organization of the succeeding sections. In §§4 and 5 we derive and discuss
each of the partial processes into which the total scattering process naturally breaks down. The
structure of the expression for the scattered flux is such that these partial processes can be
treated independently of each other: it is expressed as a functional, equation (5.3) below. The
functional, as such, describes scattering in the medium independently of how that process is
coupled with the incoming and outgoing waves outside the medium. The particular fields that
appear as arguments of the functional (to yield the externally scattered flux) describe the
coupling of the scattering process in the medium with the external waves and the associated
surface effects. So the partial processes of the total scattering process can be treated
independently and then finally combined in a wholly natural, indeed straightforward, way.

Thus in §4 we go on to analyse the fields that appear as arguments of the functional for the
scattered flux to show how the scattered light behaves at the surface of the medium. Here we
find there exists a reciprocity principle that accounts for a part of the surface dependence of the
scattering describable as refraction and reflection of the scattered light, and that the problem
consequently can be solved through an argument involving a new form of extinction theorem
for the scattered light comparable with that due to Ewald (1912, 1916), Oseen (1915) and
Darwin (1924) for the incident light (as described by the response theory developed in the
paper I). We demonstrate this way that the microscopic theory exhibits all of the effects one
intuitively expects: refraction and reflection with the intuitively correct transmission and
reflection coefficients, with intuitively correct transformation of the effective differential solid
angle at the surface, and with a natural dependence on the polarization of an analyser, if
present. The theory takes proper account of any system of stops used in any real scattering
experiment. In short, all geometrical features are quantitatively accounted for. The reciprocity
principle introduced also solves the problem of accounting for the contributions from
scattering, which has made an arbitrary number of internal reflections inside the scattering
medium.

In §5 we consider the form of the functional (5.3) for the scattered flux. This functional can
describe the scattering process in the medium independently of the external waves. We develop
it into an infinite series of ‘macroscopic’ multiple scattering. This expansion is the result of an
iteration of an integral equation (which though straightforward offers an additional technical
problem of convergence to solve). What makes this particular expansion significant is that we
can demonstrate that its terms have all the properties we would require from multiple
scattering in the macroscopic sense implied by strictly phenomenological theories. We also
demonstrate the natural multiple scattering character of the terms by showing explicitly how
the simplest multiple scattering terms are associated with damping of propagating waves.

In §5 we briefly discuss macroscopic single scattering. Intuitively an important characteristic
of single scattering is that it is spatially localized ; we find that macroscopic single scattering is
local except for a peculiar class of processes. These non-local (and therefore slightly surface
dependent) processes are shown to have a form incompatible with macroscopic ideas of
multiple scattering. (Nevertheless they can be viewed as peculiar interference terms associated
with multiple scattering, namely terms describing interference between a multiple scattering
path and the time-reversed path.) They are shown to be similar to terms that are considered
responsible for the phenomenon of back-scattering enhancement in the scattering from
suspensions of macroscopic particles (Kuga & Ishimaru 1984; Van Albada & Langendijk
1985; Wolf & Marat 1983).
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258 F. HYNNE AND R.K.BULLOUGH

Section 6 develops the theory of a scattering cross-section per molecule in terms of
macroscopic single scattering from a gas or low density fluid. Here we sum all two-body terms
in an approximation similar to the one used in the refractive index theory in part II, and we show
that (away from resonance) the two results wholly agree.

In §7 we consider Einstein’s phenomenological light scattering formula, as modified by
Yvon. We prove in detail that this macroscopic single-scattering formula involves microscopic
multiple scattering processes of arbitrary order and that it holds (with a minor qualification)
up to neglect of specific groups of terms starting at order six in the polarizability density, na.
In this case we must neglect terms of relative order O (k3 [?) with k, = w/c at frequency w and
{ an intermolecular correlation length. So the simple macroscopic formula apparently does not
apply to critical opalescence beyond the lowest order in na. In the proof we separately derive
exact microscopic expressions for the left and right sides of the phenomenological equation and
then compare the two resulting series order by order.

In §8 we summarize the results of the paper and conclude this particular series of three
interconnected papers.

2. REVIEW OF FUNDAMENTAL RESULTS

We shall develop the theory of external light scattering from results of part I, and for easy
reference we briefly display and explain the necessary equations. The theory is formulated in
terms of a number of propagators and other objects and the three subsections following
introduce one by one each of the three quantities that are fundamental to the theory. The three
quantities are the scattering kernel, the weight field and the screened radiator.

(a) Scattering kernel

We consider a scattering experiment in which a coherent electromagnetic wave, E(x, ), is
incident on a fluid contained in a scattering cell of definite geometry. In response to such
external field the system establishes an average polarization of the molecular medium, P(x, w)
and an average electric field inside and outside the medium, & (x, ). Other features of the
response are the external incoherent scattering as well as higher moments of the field. The basic
response problem, the determination of P and & in terms of an external field E, was treated
in parts I and II by solving the pair of coupled equations (I 3.1) between & and P, namely

&(x,0) = E(x,0) +f F(x,x;0) P(x',w)dx’, (2.1a)
P(x,w) =J Ax,x";0) & (X', 0)dx’. (2.15)

We shall recall the definitions of F and A shortly. In this paper we are concerned with the
incoherent scattering. The total flux per unit solid angle radiated from an instantaneous
induced polarization P™ can be obtained from the Poynting vector. The flux in the direction
of the vector k, detected with polarization v, is given by (I 2.275):

) cki
I'"(k,v) = gr%

J e(x;k,v) - P"(x,w)dx 2, (2.2)
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in which e is defined by
e(x;k,v) =vexp(—ik-x), |kl=ky=w/c, lv|=1, k-v=0. (2.3)

Equation (2.3) is (I 2.204). (The sign in the exponential is actually wrong in (I 2.204). But it
appears correctly everywhere else in part I.)

The coherent scattering is obtained from (2.2) when the instantaneous polarization
P (x,w) is replaced by the average polarization P(x,w); and the incoherent scattering is then
the average of the total scattering (2.2) minus the coherent part, i.e.

J(k,v) = §< 2>, (2.4)

in which AP (x,0) = P"(x,0) — P(x,w), (2.5)

f e(x;k,v)-AP"™(x,w)dx
Vv

is the instantaneous fluctuation of the polarization from the average at the point x.

Now P™ and P are part of the response of the system to the external field E, which has been
treated in parts I and II. However, it is preferable to express the scattering in terms of another
part of the response to E, the average field &, determined by (2.1). The P and P™ are given
by (2.154) and (I 3.6):

P (x,w) =f A" (x,x";0)- & (X', 0)dx’. (2.6)

The kernel A™ depends on the instantaneous configuration of molecules and has the average
{A™» = A. By use of (2.14) and (2.6) we then get (I 4.27) for the flux of scattered light, namely

J(k,v) = 5;;1 , (2.7)
= )

in which AA™ (x,X";0) = A" (x,x";0) — A(x, X"; ). (2.8)

f f e(x;k,v)-AA™ (x,x";0) (X', 0)dxdx’
vJVv

The explicit appearance of configurationally dependent quantities and averages in (2.7) is
inconvenient. These features are therefore concealed in a kernel (I'3.334):

G0 = j CAAL - [k €3 e;]  AAT,) dx,y dix, (2.9)
vJy

which can be expressed in closed form (exhibited below). A superscript t on a kernel denotes
the hermitian conjugate kernel. In (2.9) and below we use a concise notation in which variables
are indicated by subscripts, thus e, = e(x,;k,v). The result of using (2.9) in (2.7) is the
fundamental form for the flux of scattered light per unit solid angle in the direction of the vector
k, detected with polarization v:

_ cky

J(k,v) S

f f E*(x,0) - 0(x,x";k,v)-&(x',0) dxdx’. (2.10)
VJv

By expressing the scattering by (2.10) together with (2.1) we isolate the problem of finding
the behaviour of the incoming wave at the surface of the medium from the rest of the scattering
process. The surface dependence associated with, for example, refraction of the incoming wave
can therefore be treated separately and is absent from (2.10) when & is considered a given
function (obtained through (2.1)).

This separation of the collective surface effect associated with the incoming field is a


http://rsta.royalsocietypublishing.org/

A
%

y
A A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

AN

A \
amn

yan \

|

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

260 F. HYNNE AND R.K.BULLOUGH

significant move. The next, and very important, step towards finding an effective treatment of
light scattering in microscopic terms is to find a similar separation for the scattered wave: this
is both physically sensible and the only practicable way to handle a strong surface dependence
of the scattering process remaining in the kernel ¢ in (2.10).

Thus, the flux of scattered light J(k,v) is a quadratic form in &, the average field in the
medium, and considered as a functional of & it describes the scattering of a wave & detected
in vacuum outside the medium; so the kernel ¢ may be said to describe this process. We want
to separate off the collective surface effect by expressing o itself as a quadratic form in the
counterpart of & for the outgoing field, the weight field & introduced in the following
subsection. We therefore need the explicit form of the scattering kernel, ¢, and that is described
most simply if we can refer to an expression for A. We therefore briefly return to (2.1) and
explain F and A.

In (2.1) F is the propagator giving the field at x from an oscillatory dipole P(w) at x” as
F(x,x";w)- P(w). It can be expressed in any of the several forms (I 2.2), for example

Flx,x ;) = (VV+k§U)E$(;-’Y°—’—), =|x—x|, k0=%, (2.11)

where U is the unit tensor. The definition (2.14a) of the average field can now evidently be
viewed as the sum of the external field and the field from the average polarization P. However,
it is necessary to add the interpretation of the integral near the singularity of F as the sum of
the conditionally convergent integral over all of the region V except a vanishingly small sphere
(denoted v) together with ‘the contribution from the small sphere’, (I 3.4):

lim | F(x,x";w)dx’ = —3nU. (2.12)
v->0
The definition (2.1a) with (2.12) is justified by the results of part I, see the discussion in §6
there.
The kernel A was found in part I as the infinite series expansion

Alo—naU310+Z (o) P+ J J Fio-Fag - Fpo Higg odX, ... dx,. (2.13)

Here « is the polarizability of an isolated molecule, n is the average density of molecules, and
the intermolecular correlation functions H are given in (I 3.18) in general. The first few H
functions are

12=G»12—1, H123=G123_G12_G23+1,---- (2.14)

The generalized distribution function n”G,,5 ,, is defined by (I 3.14) as the averaged product of
the instantaneous density of molecules at the points x;, X,, ..., X,,. The functions are generalized
in the sense that they include self-correlations represented by delta functions, thus:

Gy, = g12+”_1312a Gios = graztn” (312+323)g13+313g12+n_2312 Oogyvnn s (2.15)

The functions g are the ordinary correlation functions of the theory of fluids (see, for
example, Hill 1956) and d;, = §(x,—x,) denotes a delta function. We shall refer to the
particular functions G or g as distribution functions.

The use of generalized correlation functions results in a great simplification of the theory
once we have introduced the interpretation (I 2.26):

[F(x, x';w) 6(x—x")dx’ = Zik3 U. (2.16)
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The self-correlations generate the self-interactions of the theory in the expressions in terms of
generalized functions, and by the definition (2.16), in particular, radiation reaction is accounted
for. Sometimes it is convenient to conceal the effect of radiation reaction in a complex
polarizability (I 2.7),

y=a/(1-tika). (2.17)

In the refractive index theory all self-correlations produce terms involving self-interactions, but
in the scattering theory this is not the case. The reason is that a partial process describing
radiation to an infinitely distant detector appears in the refractive index theory as the reaction
due to that radiation. We shall have occasion to compare the two situations in §5.

The scattering kernel has an expansion of a form very similar to (2.13). We shall quote it
once we have introduced a special propagator associated with scattering, namely the factor in
square brackets in (2.9),

S(x,x";k,v) = ke*(x;k,v)e(x'; k,v) (2.184a)
together with one for scattering not analysed for polarization,
S(x,x"; k) = k}(U—kk) exp [ik- (x—x")]. (2.18b)

The form (2.185) is obtained from (2.184) by summation over two orthogonal polarization
states perpendicular to k. We shall call S(x,x";k,v) a ‘radiator’. It determines the total
scattering per unit solid angle in the direction of k with polarization v from an instantaneous
polarization P™(x,w) as

2
1" (k,v) =;k—;; J f P (x,0)*-S(x,x"; k,v)- P"(x',0) dx dx’. (2.19)
vVJV

If the scattering is not analysed for polarization the scattering has the same form (2.19) with
S(x,x’; k,v) replaced by S(x,x"; k).

The expression for 6 contains sums of products of a number of propagators F and one S, and
to simplify the presentation we need a shorthand notation for such combinations as in (I 3.35).
In the expression (2.13) for A there appears in the integrand a product of propagators F
corresponding to an ordered set of points x,, X,, X3, ..., X, X,, in which the points X, and x,, are
free whereas the others are integrated. Corresponding to such a product in the expansion of A
there appears in ¢ the combination

S{F1y Fag-v Fpo) = S1a-Fag oo Frot Fio-Sog o Frgt oo +Ff-F3y . S . (2.20)
Now we are in a position to quote the expansion of the scattering kernel (I 3.34)
6(x,,x,; k,v) =% (na)”“f J S{Fyp-Fag ... Fpot Hygg  podx,...dx,. (2.21)
p=1 Vv 14

In other words, we get the expansion for ¢ from the one for A by replacing a product of p
propagators F by a sum of p terms in which each F in turn is replaced by S, and propagators to
the left of S are complex conjugated.

The result (2.21) was derived in part I, and it reveals a close relation between the
susceptibility kernel A and the scattering kernel 6. Indeed, this can be written

o(x, x'; k,0) = S{A(x, x';0)}, (2.22)
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262 F.HYNNE AND R.K.BULLOUGH

if © is treated as a linear operator and taken outside integrations and summation. The action
of © on a term not containing Fs is defined to be zero. The close similarity of the scattering
theory and the refractive index theory expressed by (2.22) will be exploited below.

The relation (2.22) also shows that the radiator is a very natural object to use in the
scattering theory. It appears on a par with the propagator F in (2.21) (through (2.20)), and
S and F are connected by a Bohr-Peierls—Placzek type relation:

Y S(x,x";k,v;)dQ, = 4nky" Im {F(x, x"; 0)} (2.23)
j=1,2
derived in part I below (I 2.14) (cf. Sakurai 1967). And this relation together with (2.22)
imply a similar relation between ¢ and A, namely

Y o(x,x';k,v,)dQ, = 4nky Im{A(x,x"; 0)} (2.24)
j=1,2

proved below (I 3.42). (In (2.23) and (2.24) we sum over two orthogonal polarization states
and integrate over all directions of k.) Equation (2.24) implies that the extinction coefficient
calculated from the total scattering agrees with the one calculated from the imaginary part of
the refractive index (see (5.42) below) as we discussed near (I 5.41). But as noted there, there
is a paradox associated with the surface dependence of the scattering, which contrasts with the
much weaker surface dependence in the corresponding expression for the refractive index. This
we shall solve in the present paper.

(b) Weight field

We want a formulation of the theory in which the behaviour of the scattered light at the
surface of the medium can be treated separately from the scattering process in the medium. We
therefore consider the average field at a distant detector at R from an oscillatory dipole probe
P(w) at x when |R| > |x| and kj|R—x| > 1 for all x inside the medium. The asymptotic form
of that field is (from (I 4.14) with (I14.18)):

Rexp (iky R) K2 &(x; k,v)- P(w), R=|R|, (2.25)

for the component with polarization in the direction of v; the wave vector k has magnitude
|k| = kg = w/c and the direction of R (approximating R—x for any x€ V in the limit R — 00}
for finite R the origin is chosen inside V). The quantity &(x;k,v) in (2.25) satisfies
the integral equation (I 4.28), namely

e(x;k,v) = e(x;k,v)+f f e(x';k,v) Ax', x";0) F(x", x;w)dx’dx". (2.26)
vJv

It must be stressed that although & has been defined in terms of dipole probes the result of
the theory in no way depends on probes. Only molecular dipoles appear in the theory. The
same remark applies to the definition of the propagator & in (2.33) below. Note also that the
‘field” &(x; k,v) depends on x which is a source point, so it is not an ordinary field; we call it
the weight field for reasons that will become clear. The inhomogeneous term e of the integral
equation (2.26) is defined in (2.3): note the minus sign in the exponential. (The definition of
e will be generalized in (4.2) below to account for scattering with stops.)
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In part I we showed how J can be expressed by (I 4.36) explicitly in terms of & rather

than e,
o p-1
J(k7 v) = E E Jpq(k> v)) (2.27a)

p=2 q=1

dxl...J dx, K%; ,
14
X (&,-Fyy... F(q_l)q~sq)*8q+1-F(q+1)(q+2) F(p_l)p-é”p~ (2.27b)

k3
Tyalle,w) = 52 (n2)? J

|4

The general expression for the K functions is given by (I 4.37) in terms of the H functions
(2.14). In terms of the Ursell functions (see (I 4.12) and (2.40) below) we have up to fourth
order (I 4.38):
Ky = Uy, Kipy = Ki3y = Uyg,
K{3ha = Upgg+ Uy Upy+ Uy,
K{5ha = Usgay + Uyy Upy + Uy Ups,
Kg):m = Usasa+ Uy Uy + Uy

(2.28)

It may be helpful if we discuss a different form of the result (2.27), namely (I 4.29):

4 2
J(k,v) =-‘;—1‘t’< f f g,-A. &, dx, dx, > (2.294)
vVJV

This is an explicit expression for J(k, v) in so far as the kernel Al is given explicitly as (I 4.30):
Al = AA‘I',‘)—J J AsFor AAY dx, dx,. (2.294)
vJv

Here AA™ denotes the difference (2.8), A is given explicitly by (2.13), and A™ can be obtained
by straightforward iteration of (I 3.10) with (I 3.12).

The form (2.29) may be easier to understand if less explicit than (2.27). We may think of
A™™ as representing an instantaneous susceptibility fluctuation, which scatters the incoming
wave in the medium, &, into the outgoing wave in the medium represented by &. The explicit
form (2.27) is obtained from (2.29) by writing the absolute square of the double volume
integral as a four-fold integral. In this way &*¢ appears between two kernels A™ ' and A™. If
these kernels are expanded we get the sum of terms in (2.274) with the averaging producing
the correlation functions K.

A comparison of the two forms (2.27) and (2.29) serves to emphasize how the dyadic
combination

S (x,x";k,v) = kie*(x; k,v) e(x'; k, v) (2.30)

of two weight fields appears naturally nested inside a chain of propagators F. We have already
seen how the dyadic combination (2.18) of two e appears naturally in a chain of propagators
F asin (2.21) with (2.20) and how (2.18) itself has some character of a propagator (see (2.23)).
It turns out, that ‘nested forms’ in which the quantity (2.30) appears inside chains of
propagators are by far the simplest formulation of the theory, and that (2.30) is naturally
contained in a radiator generalizing (2.18), which has propagator character and other very
important properties. It is introduced in the following subsection.
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264 F.HYNNE AND R.K.BULLOUGH

We have now reached an expression in which the collective surface effect associated with the
scattering can be treated separately through the weight field ¢, and the scattering process in the
medium is described explicitly by (2.27) with & and ¢ given functions. The fact that the weight
field describes refraction and reflection at the surface will be demonstrated in §4. The following
subsection prepares for a necessity of analysing the scattering in the medium still further.

(¢) Decomposition of the screened radiator

We now have two expressions for the scattered flux; one is (2.10) with (2.21), the other is
(2.27). Each of these expressions is important in the theory. The first form is used for deductions
of theoretical results like (2.24) and for further development of the theory; the form (2.27) is
used for an analysis of the Einstein light scattering formula (7.1) and for a description of the
low-density behaviour. Nevertheless, even the result (2.27) is still not generally satisfactory
because, beyond the third order in na, the integrals of (2.27) depend explicitly on the geometry
of the scattering cell (i.e. besides the implicit dependence through the weight field). We shall
therefore need to analyse the scattering process still further. To deal with this remaining surface
effect we introduce a propagator & which contains ¢*¢ and so deals with the collective surface
effect as well. We call & a screened radiator (corresponding to the unscreened radiator S).

Consider a distribution of dipole probes {P,(w)} embedded in the many-body system. We
define & to give the average flux per unit solid angle in the direction of k with polarization
v from the probes {P} as

2
ok}

8nZ]P;"(a))-,S”(x,,xs;k,v)-Ps(w). (2.31)

7,8

The radiator & is related to the weight field ¢: Define an instantaneous weight field & to give
the instantaneous field at a distant point R in the direction of k with polarization v by (2.25)
with ¢ replaced by ™. Then & is given by (I 4.17), namely

P (x,x ;k,v) = k™ (x; k,0)* " (x; k, v)). (2.32)

Recall that ¢ appears in (2.27) in the quadratic combination (2.30). Thus, whereas & gives
the average flux radiated from a collection of dipole probes, &’ gives the flux of the average
field. (The instantaneous weight field &™ is defined by (I 4.15).)

To see the difference between & and & and to develop the theory in terms of & we shall
need also the screened propagator & introduced in part I to give the average field at x from
a dipole probe P(w) at x” as

F (x,x';0) P(w). (2.33)

(Note the remark below (2.26).) It satisfies the integral equation (I 4.3),
Fio= F10+J f Fior Mgy Fypdx, dx,. (2.34)
vJVv

Explicitly it is given by (I 4.13),

oo}

Fpo=73 (noc)”"lfv...ﬁ/ Fio-Fog o Fpo Gag_pdx, ... dx,, (2.35)

p=1
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(where the first term of the series is F;,) and it can be approximated by (II 4.13) with (II 4.4),
F (x,x';0) = F(x,x"; w) + reflections, (2.364)

exp (imky|x —x'])
m?|x—x’|

F(x,x;0) = (VV+m?2U) (2.36b)
Here m = m(w) is the refractive index of the fluid determined in part II. The results (2.35) and
(2.36) show that & is a natural generalization of F to propagation in a medium of refractive
index m. The wavenumber is mk, rather than the &, of (2.11) and for mkyx —x’| < 1 there is
the usual static screening with m® or the dielectric constant (I 5.27) in the denominator. The
propagator & is surface dependent, but we argued below (II 4.12) (but did not prove) that
the surface dependence can be understood in terms of surface reflections of waves radiated from
a dipole probe.

It is an interesting and important fact that the screened radiator & has an expansion very
similar to (2.35) for &, namely

Lro=73 (na)f’—lf f S{Fip-Fag ... Fpot Gy pdx,dx, ... dx,, (2.374)
p=1 |4 14
or L (x,x"; k,v) = S{F (x,x";0)}. (2.37h)

This result was derived in part I below (I 4.22). Because & and & are so closely related, the
expression for ¢ in terms of © and & has the very simple form (I 4.25),
6= 2 (mx)”“f f SHF 1y Fos .- F po) Yiag. podx, ... dx,, (2.384a)
p=1 v v
in which the effect of the operator & on a product of screened propagators & is the natural
generalization of (2.20), namely (I 4.24) or

B Fry Foy . Fopy = Ly Ty F

AT Lo Tt AT TS,

po°

(2.385)

The intermolecular correlation functions Y in (2.384) are defined by (I 4.11) in general, and
the first few functions expressed in terms of generalized Ursell functions are:

le = U12> les = U123a 171234 = Ujpge + U13 U24> cee e (2-39)

The Ursell functions can be defined through the recurrence relation (I 4.124) and the first few
functions are (see, for example, Lebowitz & Percus 1961)

U12 = Gl2_1> U123 = 0123_012_023"031+2a v (2-4’())

Recall that the functions are ‘generalized’ in the sense that they include all self-correlations
introduced through the generalized distribution functions (2.15).

Note how naturally the propagators & and & fit together. They have similar expansions
(2.35) and (2.374), each in terms of the distribution functions simply; and they are indeed
connected by a Bohr—Peierls—Placzek relation (I 4.26) just as S and F are. Note also that each
term of the sum (2.385) generated by the operator & is weighted by the same intermolecular
correlation function in (2.384). In contrast the expression (2.27) does not possess this
symmetry.
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266 F.HYNNE AND R.K.BULLOUGH

All these simple properties of & suggests that the screened radiator is an important object;
and the weight field certainly is important since it describes the surface behaviour of the
scattered wave as we shall show in §4. This raises the question of how & and ¢ (or &) are
related. The answer is (I 4.21)

S0 = k2 ¥ 80+J F iy 6,5 Fypdx,dx,. (2.41)
vJv

This relation shows that the screened radiator differs from the quadratic combination (2.30)
in the weight field by the term containing a pair of propagators & * & and the scattering
kernel. Thus in addition to simple radiation to the detector through the medium from a pair
of points x,, x,, the radiator & contains a term describing propagation through the medium
to another pair of points in the medium followed by incoherent scattering from there. This
means that & accounts for scattering of the propagating scattered wave, i.e. multiple
scattering.

This fact suggests that (2.41) can be used to obtain a microscopic representation of
macroscopic multiple scattering and to develop a systematic theory for it. The details of how
this can be done appear in §5. However, we first present an overview of how the complete
scattering process can be separated into physically meaningful constituents that can be
individually analysed, namely those we have already mentioned, collective surface effect and
macroscopic multiple scattering. This we do in the immediately following §3.

3. ANALYSIS OF THE COMPLETE SCATTERING PROCESS

We are considering a situation in which an external electromagnetic wave, E(x,w) is
incident on a molecular fluid contained in a finite region V, and the incoherent scattering is
detected in vacuum outside the medium by a distant detector. The wave is monochromatic
(with wavelength large compared with molecular sizet) and spatially coherent, but otherwise
an arbitrary transverse solution of the free field wave equation (equation (I 5.9)). In figure 14
we show a scattering situation in which E is a plane wave restricted by a stop.

(@) e (6) e (¢) /

EN- ks E

-
~
e
e,
.

.

.
/\//
4
NP N
s

’

Fiurs 1. The fields E and e and their relation to & and ¢ The region labelled E shows an incident beam of light
outside and inside the scattering cell V. The region labelled e shows the part of space that can be seen from
the detector through the stops. Inside V the field E is extinguished and replaced by an average field & non-
vanishing in the region labelled &. The weight field ¢ is related to e the same way as & to E and is non-vanishing
in the region marked &. The relation of e and & suggests that scattered light is refracted at the surface. This
interpretation will be confirmed in §4.

For our purposes the detection system is characterized by the direction from the scattering
cell to the detector, by the polarization of an analyser, if present, and by the geometrical
arrangement of possible stops for the scattered wave. The effect of these properties of the
detection system is accounted for by the ‘field’ e(x;k,v), given by (2.3) when there are no

t A theory of the same structure arises at X-ray frequencies with a substantial change of details. The smallness
of the scattering cross section means that many-body effects are very small, however.
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stops for the scattering; and we shall show in §4 how (2.3) can be generalized to cover also the
case of scattering restricted by stops.

For illustration we have indicated in figure 1a an e for scattering with a stop. The region
between the full or dotted lines labelled by e is the part of space where e is non-vanishing.
Reference to figure 1 may help in visualizing the scattering process. The figure will be justified
in §4; meanwhile we may think of e as given by (2.3) for most of the present discussion. The
field e plays a role for the scattered wave similar to the one played by E for the incoming wave,
and we may often think of e in figure 1a as representing the scattered beam outside the medium
just as E is (physically) the incoming beam outside the medium. We shall come back to the
question of the way in which e actually represents the scattered wave.

The process we have just indicated is the complete scattering process we want to describe.
The process starts with an incoming wave travelling in vacuum outside the material medium
and ends with a scattered wave detected in vacuum outside the medium. And to help the
reader grasp how this complex process is represented by the mathematics we will list together
all the relevant equations distributed throughout §2: E, = E(x,,w), is the given externally
incident field and

& = El+fv JV Fio:Agy+ &5 dx, dx,, (3.1a)
J=68—/C§JVL¢5”;"-610-¢5”0dx0dx1, (3.10)
G, = qu (noc)?*1 L L Tl Ly Fpo Y. podx,dx,, (3.1¢)
P, = R 80+JV JV Fh 6y Fopdx, dx, (3.1d)
&, = e0+fV JVsl-Alz-on dx, dx,, (3.1¢)

while e, = e(x,; k,v), is given by (2.3) (or by (4.2) below). In the discussion following we shall
refer to these equations simply as (a)—(e) ; (a) is a combination of (2.14) and (2.15), () is (2.10),
(¢) is (2.38a) and (2.385) combined, (d) is (2.41), and (e) is (2.26).

It is worth noting at this point that the mathematical problem in (a)—(e) is to
calculate the total scattered flux J given by (). To do this we need to calculate &) in terms of
E| from (a); and we need to calculate 6,, from equations (¢)—(¢). Equation (¢) allows us to solve
for ¢, and this allows us to solve the coupled system (¢) with (d) for 6. Thus the system of
relations is complete. ‘

First, it is important to realize that the outgoing wave does not appear as a physical wave
in (a)—(e). The theory gives the flux of scattered light J as a functional of the fields E and e
representing the source and detecting systems respectively. The flux J is given by () and E and
e appear in (b) through the & and &. This means in particular that any conclusion regarding,
for example, the behaviour of the scattered wave at the surface of the medium must be inferred
from the dependence of J on e. Nevertheless we shall see that we are able to deduce all details
about the scattered wave from that dependence.

After these preliminary remarks we are now ready to show how the solution to (3.1) in the
terms just explained describes the complete scattering process. The interpretations used in the
description are substantiated in the following sections.
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The entrance of the incident wave into the medium is described by (@), and the exit of the
scattered wave from the medium is described by (¢). These two similar equations determine the
average field in the medium, &, and the weight field, &. These equations can be treated
separately, and they determine the behaviour of the incoming and scattered waves at the
surface of the medium: transmission with refraction and attenuation, reflection with loss,
polarization dependence, etc. Indeed, (a) has already been solved in parts I and II, and for (e)
we can use the same technique and utilize the results obtained in parts I and II. The result is
& in terms of E and ¢ in terms of e. The general method involving the extinction theorem of
Ewald (1912, 1916) and Oseen (1915) and the explicit solution for a parallel-sided slab are
described in §4 below and in §6 of part I.

The problem of finding and interpreting the weight field is solved in §4. For the case
illustrated in figure 1a we know from parts I and II (and from macroscopic optics as well) that
& has the appearance sketched in figure 14. Anticipating the results of §4 we have also
indicated in figure 15 what & may look like in relation to the e shown in figure 14; it may help
our discussion if we can refer to these qualitative results. Roughly & may be thought of as
representing the scattered wave in the medium.

With (a) and (e¢) solved for & and & there remains the problem of solving the set of coupled
equations (¢) and (d) in order to calculate J in terms of & and & Denote the functional
dependence J on & and ¢ by #(&,¢): & and ¢ are then arbitrary. The scattered flux can then
be written as

J(k,v) = F(8,¢), (3.2)
when & and ¢ are chosen as solutions to (a) and (e) respectively. Recall that we already have
the closed form (2.27) for #(&,¢). From this result or directly from the equations (3.1) it can
be seen that (&, ¢) is actually quadratic in & and in g, or rather it is linear in £*& and &*¢;
hence it is determined by a multilinear operator .# describing scattering in the medium, which
we shall introduce below. The expression (2.27) is strongly surface-dependent; and to handle
the surface dependence and understand what it means physically we must work from the
particular set of equations (3.1) rather than (2.27).

In (3.2) & is the incoming field in the medium and & represents the scattered wave in the
medium so the functional £ (&, ¢) describes the scattering process in the medium. Thus we have
obtained the scattering process in the medium either as a part of the complete scattering process
(when & and ¢ are solutions to (a) and (¢)) or indeed as a more abstract concept (when & and
¢ are considered arbitrary fields in the medium).

We have still to consider (¢) and (d), a pair of coupled equations for ¢ in terms of &. If (d)
is substituted for & in (¢) we get a linear integral equation in 6. The source term of this
inhomogeneous equation is given by the right side of (¢) when &, ,, is replaced by &) &,,,, and
it is this term (substituted in (b)) we shall define as macroscopic single scattering. That this is
a sensible definition will soon be evident. Then macroscopic multiple scattering is generated by
the higher iterates of the linear equation (¢) with (d).

To get these iterates and exhibit their structure we rewrite (b)—(d) in terms of two operators
£ and Z as

J = (ck2/8m) E*& o, (3.3)
c=%:, (3.3¢)
& =ke*e+Z 0. (3.3d)
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Evidently, this transcription of (3.16-d) defines % and Z. The notation (b), (c), and (d)
will now refer equally to either (3.1) or (3.3).

It is preferable to separate the dependence on the outgoing as well as the incoming wave
from the scattering process in the medium by introducing a further operator .# representing
what is essentially the functional (&, ¢) through the definition

6 = k2 M :e*¢. (3.4)
The scattered flux then takes the form
J(k,v) = I(&,¢&) = (cky/8m) E*E: M :e*e. (3.5)
Substitution of () in (¢) gives an equation in o,
6=kL ee+L: %0, (3.6)
and substitution of (3.4) for ¢ then yields the simple equation for .# in terms of &£,
M=L+L:Z: M, (3.7)

as & can be considered arbitrary. Straightforward iteration of (3.7) now generates the
macroscopic multiple scattering expansion

M=F+L Z L +L %L ZL+.... (3.8)
In particular, the first term of (3.8) gives macroscopic single scattering
JO = (cky/8m) E*E: L g% (3.9)
upon substitution in (3.5), and the second term of (3.8) similarly gives double scattering
J® = (cky/8m) E*E L : % : L e*e, etc. (3.10)

Note how operation from the left (right) in equations (3.3)—(3.10) corresponds to multiplication
from the inside (outside) in (3.1). We shall be more specific about the form of the operators
when we come to treat multiple scattering in §5; thus the operator £ is given explicitly by (5.5)
below, and the relations (3.7) and (3.9) are shown in detail in (5.4) and (5.6) respectively.

We can now see some important features of the total scattering process (up to actual
demonstration in detail in the following sections). Note first that each term, whether single
scattering or multiple scattering, is linear in &*¢ and in £*& ; and this of course applies as well
to each individual term arising from the separate terms contributing to the sum (3.1¢) as they
appear in single or multiple scattering. This means that each scattering process in the medium,
whether single or multiple, has the same collective surface effects and these are solely described
by & and ¢ in their relation to E and e.

We may exemplify this feature by a simple geometrical consequence. Suppose, for simplicity,
that the single scattering process described by £ is spatially local (or consider any local
contribution to it). Then note that the fields & and & always appear in the equations (3.1)
integrated over the region V. This means that if & or & vanishes in some region of V (for example
as an effect of stops) we get no contribution to the (local) single scattering from such region.
We get contributions only from regions of V where & and & are both non-vanishing, so single
scattering arises from a proper scattering region, shown shaded in figure 15. For macroscopic
double (n-tuple) scattering (3.8) shows that there must appear two (n) localized scattering
processes; and plainly the first one must take place in a region of ¥ where & is non-vanishing

22 Vol. 330. A
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whereas the last one must take place where ¢ is non-vanishing. Between such single scattering
processes there is propagation in the medium as described by the pair of propagators & *%
which is contained in the operator &, as comparison of (3.1d) with (3.3d) shows. The
important point here is that all features of the behaviour of the scattered light at the surface
of the medium are determined by & and these features are therefore exactly the same for double
scattering (for example) as they are for single scattering.

Now that we have seen how the complete scattering process can be separated into physically
meaningful partial processes we can proceed to treat each of these partial processes separately.
In this way we shall justify, and elaborate on, the assertions we have made in this overview of
the complete scattering process given in this section.

4. BEHAVIOUR OF THE SCATTERED LIGHT AT THE SURFACE

In this section we show how the weight field & describes the behaviour of the scattered light
at the surface of the scattering medium: particularly transmission with refraction and
attenuation; reflection with associated loss; dependence on polarization; effect of stops.

We work from equation (2.26) for & and note that it can be written in the equivalent form

e(x;k,v) = e(x;k,v)—i—J J Flx,x";0) A(X',x";0)-&(x"; k,v)dx’ dx” (4.1)
VJVv

because F and A are both symmetrical tensor kernels. The integral equation (4.1) has precisely
the form of the equation (3.1a), which determines the average electric field & induced in the
medium in response to the external field E. Hence we may formally view the weight field ¢ as
the average electric field induced in the medium in response to a fictitious external field e,
which is a legitimate incident field satisfying a free field wave equation like (I 5.9) and a
transversality condition like (I 5.10). We may therefore take over the results of §§5 and 6 of
part I with the special choice E(x,w) = e(x;k,v), here viewed as a plane electromagnetic
wave of unit amplitude, polarization v and wave vector —k, incident on the medium from the
direction of the detector.

Up to this point we have considered the total scattering from the region V (in a given
direction and with a given polarization). On the other hand, the incident field E is quite
arbitrary and may in particular be a plane wave restricted by stops as is often the case in light
scattering experiments. Usually the scattered wave is also restricted by stops in such
experiments, so it is desirable to generalize the theory to cover also the case of stopped
scattering.

If we neglect the diffraction of the scattered light by the stops we may calculate the stopped
scattering by equation (2.7) when the integration over X is restricted to the intersection V° of
V'and the cylinder generated by the aperture of the stop with axis along k. Figure 24 illustrates
this situation for scattering emerging from a slab where the cylindrical region is indicated by
dashed lines. It is intuitive that neglect of stop diffraction requires the smallest size of the
aperture large compared with the wavelength and that the stops are close to the scattering
sample. ‘

The stopped scattering is given precisely by (2.7) when e is redefined to vanish outside the
cylinder,

e(x;k,v) =vexp (—ik-x) y(x; V°), (4.2a)
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in Wthh (x’ VO) _ 1 xe VO, 9
X ’ - 0 x¢ VO, (4 b)

is the characteristic function for the region V°. We shall adopt this redefinition of e. In this
way the theory carries over formally unchanged to the more general case of scattering restricted
by stops, expressed in terms of a generalized weight field (which we continue to denote by é)
given by (4.1) in terms of the generalized e.

The generalized weight field &£ may still be formally interpreted as the response to an external
field e and indeed to a plane wave of unit amplitude coming from the detector with the
polarization of the analyser and restricted by the same stops that restrict the scattering,
provided we neglect the diffraction from the stops in this inverse response problem (Hynne
1980). Figure 16 illustrates this relation between e and é&.

The correspondence between the screening problem for scattering and the inverse response
problem establishes a complete characterization of the weight field &. For we may now use the
results of parts I and II to solve equation (4.1). We may even appeal to macroscopic optics,
although we shall do so only to illustrate the generality of this reciprocity principle which we
shall conveniently refer to as the ‘inverse response correspondence’.

It is plain from the discussion of §6 of part I that the weight field will show the same sort
of deviation from continuum behaviour as does the average field & (see the discussion starting
on p. 287 of part I). This small deviation can be disregarded if the sample size is large
compared with the wavelength. The weight field is then determined completely by the
refractive index, which we have already found, and by the geometry of the scattering
experiment. So we regard the refractive index as known and neglect the deviations from
continuum behaviour through the ‘continuum approximation’

Alx,x";0) = ((m*—1)/4n) US(x —x"). (4.3)

Equation (4.1) then reduces to
m?—
4n

é(x;k,v) =e(x;k,v)+ 1f F(x,x;w)-é(x"; k,v)dx’, (4.4)

Vv
for the approximation € to &.

To solve equation (4.4) we note first that the solution is unique up to solutions of the
homogeneous equation corresponding to (4.4) in which e = 0. For given m (given w) we may
disregard the possibility of such normal modes and assume the solution to be strictly unique.
This means that if we can find a solution € with wavenumber mk, (satisfying a wave equation
of the form (I 5.11) then we have both found the solution and shown that it satisfies the wave
equation expected for waves in the medium.

As in the response problem we therefore assume that € satisfies the wave equation

(V2+m?k2) &(x; k,v) = 0. (4.5)

By use of Green’s theorem we then reduce (4.4) to the set of two equations (in concise notation
and compare (I 5.15))

e(x) + (4mk2) ™! <Vv+k2u>-f A4’ [(V'G(x,x')) E(x') —G(x,x) V'é(x')] =0, (4.6a)

VV.é(x) =0. (4.6b)

22-2
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Equation (4.6a) with the associated equations (4.5) and (4.65) may be called the extinction
theorem for scattered light. These equations together determine the weight field &, given the
refractive index (from part II).

We shall actually solve equations (4.5), (4.6) for the special case of a parallel-sided slab. This
example will show the significance of the weight field and will allow us to extend the
interpretation of & to arbitrary geometry. The case of a slab is easy because we can use the
results of §§5 and 6 of part I directly, and the solution is convenient for our interpretation of
¢ because the solution can be expressed in terms of a set of simple modes.

So we consider the situation shown in figure 24 in which the (infinitely distant) detector is
in the direction of k = (k,,0,k,), k, = n-k > 0, where k is the wave vector of the detected
radiation. As in part I we take the surfaces of the slab perpendicular to a z-axis at z = z* and
z =z with z" > z7, and the detector is on the side of the slab where z > z*; n is an outgoing
unit normal vector to the surface z = z* so £, and £, denote tangential and normal components
of k respectively. For the moment we consider the case where the scattering is not restricted
by stops, so the analysis of part I applies immediately. (Figure 2a shows scattering with stops;
in this way it is easy to distingish the different modes.)

I1cure 2. Behaviour of scattered light at the surface of the scatterlng cell. (a) shows wave vectors and regions for
a parallel-sided slab as derived in (4.7) and used in (4.11); V° is the directly observed region whereas V0 for
J=0,1,2, etc., are regions where the jth mode of ¢ is non-vanishing. From V° scattering reaches the detector
after j internal reﬂectlons (b) and (¢) illustrate the role of reflection ofscattermg for a finite scattering cell with
the same scattering geometry as used in figure 1. In (b) the regions V1 and V0 are shown by sets of parallel lines
effectively forming hatchings. The amplitudes of the various reﬂected modes of & and ¢ are indicated by the
degree of ¢ hatchlng Scattermg from a lightly ‘cross-hatched’ region therefore has low weight W, in (4.11).
(¢) shows a ‘ray-interpretation’ of a contribution to the scattering from a point with one internal reﬂectlon of
both incoming and scattered wave; the point appears in the 1ntegral (4.95) (with x and x” tied together by the

short range of (4.9¢)) in the intersection of the observed region V° and the illuminated region Vi,

The result for the weight field & can be written (Hynne 1980)

e(x;k,0) ~ jﬁo é,(k,v) exp (—ik?- x), (4.7a)
&k, v) = (@ o]0+ 5} v')-0, (4.7b)
At =T, (R 1) exp (i(2[37] ko + k= ko) 2" =130+ 1) a2}, (4.7¢)

Ky = (k,0, (= 1) k), ko= (m*E— kD)% (4.7d)

The result (4.7) gives the weight field & as an infinite sum of modes. In part I (where &
replaces &) these were grouped together in two contributions corresponding to the only two
wave vectors appearing in (4.7d), namely &, = (,,0, k,) for even j and k, = (k,,0—F,) for odd
J- The vector amplitudes (4.76) with (4.7¢) can be obtained by expansion of a relation
corresponding to (I 6.20) for even j. For odd j we use in addition the equivalent of (I 6.17a)
for fields. In equations (4.7) and figure 24 a superscript o refers to ‘outgoing’ or ‘observed’,
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and indices | and L mark polarizations in the plane of incidence and perpendicular to that
plane. Quite generally a tilde above a symbol associates that quantity with the medium (in
contradistinction to empty space). For example the wave vectors l;;’ of (4.7) have magnitude
|k~;-’| = mk, appropriate for vectors in the medium, whereas a vector like k for waves propagating
in vacuum has magnitude £,.

In (4.7¢) [x] denotes the largest integer that is smaller than or equal to x, whereas T and R
denote Fresnel transmission and reflection coefficients (I 6.194, ¢) and (I 6.17, ¢). The choice
for polarization unit vectors is such that (2!, 2%, %) and (v, v;, k;) form right-handed orthogonal

J
systems and

vy =0t j=0,1,2,....

To facilitate the graphical representation of the results and extend the theory we shall
generalize (4.7) to cover also the case of scattering with stops. It is with a view to this
generalization we have expanded results like (I 6.20) to express the weight field as a sum of
modes in (4.7). We have not actually solved equations (4.5), (4.64, b) for stopped scattering
so for this generalization only we must appeal to macroscopic optics through the inverse
response correspondence. With neglect of diffraction the weight field has the form

&(x;k,v) ~ X &(k,v) exp (—ikj-x) x(x; V), (4.8)
j=0

in which y(x; 1779) is the characteristic function (4.2 ) for the region V" where the jth reflected
mode of the weight field is non-vanishing. The significance of the modes of the weight field and
of the associated wave vectors l;;’ and observed regions 17';’ is suggested already by figure 24 and
it will become clear when we consider the weight field in the context of scattering. This we do
next.

At this stage we want to discuss the collective surface effects in association with purely local
scattering. Thus we consider only macroscopic single scattering. In §5 we shall show how the
description extends naturally to scattering that is non-local because of multiple scattering or for
any other reason. The flux J of both macroscopic single and multiple scattered light is
expressed in terms of & and ¢ by (3.5) with (3.8) but because we want to consider only local
scattering here we may use the explicit expression (2.27) instead and discuss the contribution
of its lowest order term as a typical example.

Here the small parameter is na. (Far from an optical resonance na < 0.1 in liquids and is still
smaller in gases.) The rate of convergence of (2.27) is unknown, but the analysis carries over
to the sum of all local terms. The contribution of the lowest order in na in (2.27) occurs for
p = 2 (order (na)?) and there is only one term in the sum over ¢, namely J;,. For p = 2 in (2.27)
the intermolecular correlations are described by K{3, which is simply the two-body generalized
Ursell function U,,, namely

Uy = gra— 1+n701, = Uy (x,—X,). (4.92)
For later convenience of interpretation we consider the flux into the differential solid angle d€2;
so we get for p =2 and ¢ = 1,
Iy (k,v)dQ = [ kg(nat) J J dxdx’
X E*(x,0) &% (x; k,v)e(x"; k,v)-E(X',0) Uz(x—x’)]dQ. (4.95)
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If & is also a sum of restricted plane wave modes

8

&(x,0) ~ 3 E,exp (ik}-x) x(x; 7)) (4.10)
0

l

we then find at lowest, i.e. second, order in na,

oy (k,0)dQ = X W, 08V (§,) dQ + cross-terms, (4.11a)
gl

W, = V2 n Vi ((k2/k,) 18]%) ((c/8m) m|Ey?), (4.115)

) = Ktno)* (9790 [ U40r) exp (), w110

4 =k—k, 9=2¢/1|, o =E/E|, (4.11d)

dQ = (k,/mk°)dQ, k= n-k.. (4.11¢)

Superscript i refers to ‘incoming’ or ‘illuminated’. Note carefully that (4.114) contains d2 on
the left side but d© on the right.

If we neglect for a moment the cross-terms in (4.114) the scattering is the sum over all modes
(j,1) of & and ¢ of the differential scattering cross section o weighted by W, It is natural
to view o as describing the scattering of an incoming wave in the medium with wave vector
and polarization (k},®}) into an outgoing wave in the medium characterized by (l;;’, 7). We
shall sometimes denote the differential cross-section by ndo/dQ to emphasize its relation to
scattering in the medium; note that o®V is the cross section per unit volume.

The weight W), is proportional to the volume of the relevant scattering region, which is the
intersection of the illuminated region V! and the observed region 17;’. It is also proportional to
the intensity of the /th mode of the incoming wave. Finally W, contains the factor (£3/k,) ||*.
In the case of a parallel-sided slab and for the special cases of polarization v = v' or v* we find

from (4.7¢) that the factor is
(Ro/k) 82 = T (R ). (4.12a)

where J| | is the transmissivity and R, , is the reflectivity for parallel, |, or perpendicular,
1, polarization,

g—llvl = /;g/knln,ﬂz: iR||,J_ = |R||,J_|2> (4.12b)

in which 7; , and R, , are Fresnel transmission and reflection coefficients for light entering the
medium (I 6.194, ¢) and (1 6.174, ¢) (Born & Wolf 1970, Lekner 1987). Thus, the contribution
from the jth mode to the scattering received by the detector equals the scattering in the medium
diminished by the loss suffered in j successive internal reflections and in the final transmission
from the medium into the vacuum outside the material system.

Figure 25 illustrates the result (4.11) for a more practical geometry. As in figure 1 the
incident wave enters from the left and the scattered wave exits at the top. The modes of & and
¢ are shown by parallel lines and the sum in (4.114) has contributions from all the resulting
cross-hatched regions where modes of & and ¢ intersect. The light hatching of reflected modes
indicates attenuation due to reflection loss. In this way the degree of cross-hatching indicates
the weight W), of a contribution (7,/) as given by (4.115).
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Figure 2¢ indicates the contribution from one point of the region ¥? n V! with one internal
reflection of the incident wave between its entrance into the medium and the local scattering
process ([ = 1) and one internal reflection of the scattered wave between its emergence from
the local scattering process and its exit from the medium through the surface (j = 1).

It is immediately clear from the construction of the weight field that the wave vectors k~;’ and
observed regions V7 admit of such interpretation. Snell’s law of refraction and the law of
reflection are satisfied and the geometry of the regions is correct. We have also just seen in a
special case that the weight W), correctly accounts for the reflection and transmission losses
associated with processes as interpreted. Notice how simply the construction of the weight field
solves the problem of finding all contributions to the total scattering process.

The result (4.11) gives the flux into the differential solid angle d€2 around k and it is essential
to the interpretation that the right side of (4.11) contains the corresponding differential solid
angle d@ around k3 (in the medium rather than in vacuum). In this way the right side of (4.11)
presents the flux in vacuum as the flux in the medium corrected by the transmissivity.

The interpretation of (4.11) given above was cavalier as far as the polarization of the
scattering is concerned. The point is that the scattering is analysed for polarization in vacuum
and not in the medium. Although o{3"
into a wave in the medium of polarization &7 such wave is in general not reflected and refracted

can naturally be viewed as a cross section for scattering

into a wave with polarization v in vacuum. Rather @] represents the effect of the external
polarization analyser referred to the medium.

The correct interpretation of (4.11) or of the more general result (2.294) is as follows. The
incoming wave in the medium & is scattered by a local susceptibility fluctuation represented
by A™ into an outgoing wave in the medium. The scattered wave (of whatever polarization)
subsequently behaves according to macroscopic optics: It propagates through the medium and
crosses the surface, then passes the stop and the analyser and is finally detected. The result
(2.294) gives the average flux per unit solid angle in vacuum of the scattering thus described.
To be more precise the scattering in the medium referred to in the interpretation is the average
radiation from the dipole distribution

P (x,0) =J A (x, x";0) -8 (X', w)dx’, (4.13)
|4

embedded in a continuum of refractive index m contained in V; the kernel A™ is (2.295). For

a complete proof of the interpretation for any convex polyhedron V' we refer to Hynne (1980).

The assumption of convexity was made to avoid the complication of reentrance of the scattered

wave into the medium. We believe it is unnecessary. Indeed, we believe the interpretation

extends to arbitrary geometry.

Note carefully that the construction of the weight field as an inverse response applies
independently of any interpretation we might make. It applies to arbitrary geometry. Thus we
may infer from macroscopic optics and the mathematical similarity of (4.1) and (3.14) that for
curved surfaces we may have a lens effect for the scattered light as indicated in figure 3a for
a cylindrical cell or qualitatively in figure 34 for general geometry.

Notwithstanding the role of the polarization unit vector &7 in the interpretation we may of
course still use (4.11) to calculate cross sections for scattering into waves polarized in directions
¥} related to the direction of the external analyser. We also have to correct with the factors
prescribed by (4.11). These are well defined though in the general case not all easily
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(4)

Ficure 3. Lens effect in scattering through a curved surface as inferred from the inverse response correspondence

— ‘ by appeal to macroscopic optics. The shaded regions in the figures indicate the effective scattering regions for
< direct scattering from (a) a circular cylindrical cell and () some general geometry. Contributions involving
> >~ internal reflections are not shown.

OH

= - . . .
@) interpreted. Such a calculation is simple only for simple geometry and it is further complicated
= O by effects of the higher terms of (2.27) to be discussed in §5.

=w

We are obliged to discuss also the cross terms of (4.114). They have the form

€k4 =~ - ~ o ’ ’ s~ ~ ’

S—J(na)de > (Eq-e,,)*(ej-El)j~ dxf~ dx’'U,(x—x") exp [1(§ - X —§;,- x")] (4.14)
,9,7,1 Vpq Vit

in which, for example, 17]., = 17;’ N V! and the sum is taken over all sets (p, ¢,7,1) with (p, q) #

(7,0). Evidently (4.14) represents interference between different modes. A term (p,q,7,{)

vanishes unless the regions qu and I7ﬂ overlap (because U, is short range) and it is diffraction
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like and negligible unless §,, = §;,. For scattering without stops from an infinite parallel-sided
slab one should therefore in practical calculations retain the closed form corresponding to (I
6.20) and work with just two modes for e&.

The scattering is quadratic in the weight field and the quadratic combination & is in some
ways more expressive than the isolated weight field. It is therefore of interest to see the form
of the simple dipole radiator & for a region V; we denote it by S, in the continuum
approximation. In the general case &’ is a sum over all pairs of modes of ¢* and ¢, that is a
sum over all modes of & plus interference terms. We restrict ourselves to the simple case of a fluid
occupying the half-space z < z*. In this case the weight field equals the first term of (4.74) or
of (4.8) for scattering restricted by stops. We then find for polarization i~ one of the principal
directions that &' ~ S, with

’_J d

§ S Sy(x,x"sk,0,,)dQ = T,  S(x,x";k°, 80 ) x(x; V°) x(x'; 7°) dQ, (4.154)
~ . ~ -

2 E S(x, x"; k° 0°) = mk} 9°8° exp [ik°: (x —x')]. (4.15b)

E O The kernel S may be called a bulk dipole radiator because a quadratic form in a polarization

— 9) like (2.31) with kernel 8 replacing & gives the flux per unit solid angle radiated from the given

polarization in a translationally invariant continuum of refractive index m in the direction of
k with polarization §. With S the “unit solid angle’ mentioned refers to the medium, and the
radiator for the flux per unit solid angle in vacuum (in the direction of k¥ and with polarization
v) contains the additional corrections of the transmissivity .7 and of the transformation of the
differential solid angle d©/dQ as well as the restrictions of the observed regions for scattering
with stops. When the polarization @ is not in any of the two principal directions, S, does not
factorize into a bulk radiator and correction factors. The bulk radiator is associated with an
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idealized scattering process in the medium. Note that the factor m in (4.155) (which comes from
the transformation (4.11¢) of the differential solid angle) is transferred in (4.115) to the factor
in |E,|? describing the dependence on the intensity of the incoming wave in the medium.

We have now demonstrated that scattered light as described by the weight field & behaves
at the surface of the medium in agreement with what one would have inferred from
macroscopic optics. This demonstration starts from the microscopic equations in the special
case of a parallel-sided slab. And by the inverse response correspondence the proof in terms
of reflection and transmission coefficients can be extended to an arbitrary convex polyhedron.
Indeed, by appeal to well-known results of macroscopic optics we can infer the behaviour of
scattered light at material surfaces for arbitrary geometry, quantitatively (up to neglect of
‘surface waves’ like those described in part I near (I 6.30)). Our conclusion therefore is that
the phenomenologically based corrections for surface effects used in actual experiments as, for
example, in Carr & Zimm (1950) (their fig. 2) are well motivated.

However, the relatively simple result (4.11) for the scattered flux represents the lowest
contribution to the scattering only. Unfortunately, the term J,, is not representative of all
higher scattering terms and we cannot immediately generalize the result for a local scattering
cross section to all orders. The difficulty is that we have to deal first with macroscopic multiple
scattering. We treat this problem in the immediately following section.

5. SCATTERING OF LIGHT IN THE MEDIUM

The flux of scattered light has the form of a functional #(&,¢) of the average field in the
medium & and the weight field &. It can conveniently be expressed in terms of operators just
as the expression (3.5) was. The transmission of the incoming and scattered waves across the
surface and the associated refraction and reflection are described by the fields & and ¢ in their
dependence on E and e as we showed in the preceeding section. Because the fields & and & may
be said to represent the incoming and scattered waves in the medium the functional ¥ (W, w)
itself represents the scattering process in the medium.

If W and w are solutions to (3.1a) and (3.1¢) respectively the functional # describes the
scattering process in the medium as a part of a complete scattering process from an incoming
wave in vacuum to a scattered wave in vacuum, giving the flux of scattered light at the
detector.

It is natural, however, to view the functional (W, w) with W and w arbitrary transverse
waves of wavenumber mk, more abstractly as describing a scattering process in the medium,
from an incoming wave W(x,w) in the medium to a scattered wave in the medium represented
by w(x,®). So we may conveniently study a prototype of a scattering process in the medium
by choosing W and w as simple transverse plane waves of unit amplitude,

W(x,0) = ¥ exp (ik'-x), w(x,0) =8 exp(—ik° x), (5.1a)
ok =0k =0, |k|=k|=mk, [=18"@=1, (5.1b)

where superscripts i and o refer to the incoming and outgoing waves respectively. We shall
occasionally use the dyadic combination (I 5.264) of two W

I(x,x'; k', 3") = 0" exp [ik'- (x —x')] (5.1¢)

and the expression (4.154) involving two w.
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Now it is plain from §3 that apart from the trivial factor cky/(87) the functional .# is simply
given by the operator .#, so this is the object we shall study in the present section.

(a) Formal multiple scattering expansion

We first exhibit the operators 4, £, and Z explicitly; they are all integral operators with
fourth-rank tensor kernels depending on four points in space. The kernel of & is particularly
simple:

Ziosa = F L2 Fa = '/'* XL X5 0) Fy (X3, X5 0). (5.2)

It depends on points x,, Xx,, X,, and x, and on tensor indices ¢,, 7,, 73, and ¢,.

The operators A4 and £ are similarly represented by tensor kernels 4,5, and &,,,, (which
form coordinate representations of the operators) and we may write expressions like (3.5) and
(3.7) explicitly as

ck4 "
6’ Ey Mgy 5 €5dx, ... dX,, (5.3)

and Mypsy = 1234+j f Lroya Zyvay Mynse dx; ... dX;. (5.4)
v v

Note how operation to the left (of operators like 4 and #) is associated with the exterior (first
and last) indices whereas operation to the right involves the interior indices. In (5.3) and (5.4)
integration with respect to a variable x; also sums the corresponding tensor index 7;, and index
J in & and g, refers to variables x; and tensor index ;.

In association with & &, as in (3.9) the kernel %#,,,, represents macroscopic single scattering
(even though & can also represent the total scattering when it is associated with & asin (3.35)
and (3.3¢) combined). We can obtain a series expansion for % from (3.1¢) by removing &, ,,

and the associated integrations. The variables and tensor indices x,,7, and x,,,,%,,, then

Q iq
become free and we get:

PLiive = 2 (na)?*? ZJ f dx,...dx, ,dx,,...dx,
1

p=

a‘* a"* *
f?(q nH1 e/“0 (q+2) * J )/'123 (g=1)1'0'(g+2) ... p0°* (55)

In all terms of (5.5) with ¢ = 1 the chain of % * propagators degenerates to Ud,,,, and in terms
with ¢ = p the chain of & propagators degenerates to Ud,,. Indices 1" and 0’ respectively
disappear from the Y functions in these cases.

Plainly the expressions quickly get rather complicated so we extend the diagrammatical
notation introduced in §4 of the refractive index theory (part II), see figure 4 next. A diagram
consists of a set of circles, which may be thought of as representing polarizable molecules. Each
circle indicates a factor na and represents a point in space appearing as one argument of an
integrand. Circles carrying a dot represent free variables, the other variables are integrated
over the region V.

A line between two circles represents a propagator between the two points; a single line
represents F and a double line represents & . A pair of arrows in double line represents the
radiator & . It is understood that propagator lines to the left of a pair of arrows in figure 45
imply a complex conjugate propagator & *,
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A= o4 o0 + ¢ o + ¢ > + PO (a)

__________________

= = g > e ecto=tp>
0 = 1 + I + \ / + PN + o + N
&= e Y>> o= =t o>
+ T X + R (¢)
P= T A T S T
+ T L R R (d)
- ()
FPX L = HBE AR E RV E B INAE Y,
= L ST
+ - +0 00+ X o+ (f)
2% 2R 2K SR AR IR IR WA B E RV R ES AN E S VAR
O AN B AT R R R A .‘.(g)
by e bepede—dety

Ficure 4. Diagrammatical representation of kernels describing scattering. The scattering kernel ¢ is displayed in two
equivalent forms in (4) and (c). The form (b) exhibits the relation (2.22) with (2.385) between ¢ and the
polarization kernel A when compared with (¢). A term in (a) with p propagator double-lines corresponds to
p terms in (4). The alternative form (¢) of ¢ exhibits a one to one correspondence between the terms of ¢ and
those of (the kernel of) the single scattering operator £, equation (d). Equations (f) and (g) show how two
or three operators £ combine to produce operators for double or triple scattering respectively when connected
with one or two operators (¢) representing intermediate propagation in the medium (5.2).

An intermolecular correlation function is represented by a loop of dotted lines, and a dotted
line coinciding with a propagator line (full single or double line) adds a cross to that line. A
loop degenerates to a (dotted) line when only two circles are involved, and two circles touching
each other carry only one factor na and represent a delta function and a unit tensor U (or a
Kronecker delta in tensor components). In this paper we shall use white circles only: loops
always represent generalized Ursell functions (2.40) with (2.15), whereas the black circle
notation of part II (which indicated distribution functions, not Ursell functions) is not needed
here. Note that any generalized Ursell function is symmetrical in all its variables although the
representation by a loop of dotted lines does not exhibit the full symmetry.

We shall start by giving the diagrammatical expansions of A and ¢ in terms of screened
propagators to show how ¢ can be formally obtained from A through (2.22). Figure 44 is the
series expansion (I 4.10) of A from figure 2 of part II (except for a small change of notation
in the first term introduced for consistency with later extensions).

We note that each diagram contains a chain of circles connected by propagator double lines
(representing % ). The first and last circles carry a dot because the corresponding variables are
free; these are the variables of A. Intermolecular correlations are governed by the Y functions
(2.39), expressed in terms of generalized Ursell functions (represented by loops of dotted lines).
The first term contains a delta function connecting the two points. The second and third terms
are each covered by one Ursell function simply, whereas the fourth-order term (with four
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280 F. HYNNE AND R.K.BULLOUGH

circles) gives rise to two diagrams because Y,,5, contains two terms in Ursell functions as (2.39)
shows.

The relation (2.22) works the same way in terms of either screened or unscreened
propagators: compare (2.384) with (2.20). Figure 44 exhibits the expansion (2.38) of 6, and
by comparison with figure 44 we see how (2.22) works in diagramatical notation. We obtain
the expansion for ¢ from the one for A simply by replacing each diagram of A by a sum of
diagrams obtained by replacing each propagator double line in turn by a pair of arrows (in
double line). This replacement of lines by pairs of arrows corresponds to (2.384). The first term
of A gives nothing because it does not contain any propagator . The second term of A
contains one & and generates one term of ¢ by (2.22). The third term of A generates two terms
of ¢ etc. 4

The scattering kernel o gives the flux of scattered light J by the quadratic form (3.14) or
(3.36). The fields &* and & attach to the free variables of 6 represented in figure 44 by the
exterior (first and last) circles, i.e. those carrying dots. By our convention &*& therefore
appears to the left of ¢ in (3.35). On the other hand ¢ contains the radiator & attached to
interior variables, appearing inside a chain of propagators & in (2.384), and the pair of arrows
appears inside a chain of lines in each diagram of figure 45. Whereas figure 45 expresses the
relation of 6 to A very clearly it is more convenient for the presentation of the multiple
scattering theory to rearrange the diagrams as in figure 4¢. In this way expressions like (3.8)
are represented more simply. We therefore rotate and bend each diagram so that the circles
with dots appear to the left and the arrows are to the right. Now it is the upper chain of double
lines (say) that represent complex conjugate propagators J *.

It is straightforward to obtain a diagrammatical representation of the kernel £ from figure
4¢. Simply remove each arrow and place a dot in the circle to which it was attached (this
represents a free variable in .#). In the case where an arrow is attached to a circle already
carrying a dot in figure 4 ¢ add another circle (with dot) touching the original one. The new free
variable must be connected to the original one by a delta function and a Kronecker delta.

The result for Z is shown in figure 4d. And because £ is represented by a pair of propagator
lines essentially (see figure 4¢) we immediately get the macroscopic multiple scattering
expressions shown in lines f and g of figure 4 for double and triple scattering respectively. The
flux of macroscopic single, double, triple, etc., scattering is now obtained from the terms of
(3.8) substituted in (3.5). In particular, we get macroscopic single scattering from the series
figure 4d or (5.5) for &£ by attaching &* and & to the exterior variables and ¢* and ¢ to the
interior ones, integrating all these variables over ¥ and multiplying by ckg/8n. Thus

4 0 -
Jm _8_0§ gj f dx;, .. Yios »

X, gk grk F .
XEY Tty T et Ty Foonp 6, (5.6)

We see that each microscopic scattering term contributing to macroscopic single scattering
involves a single group of molecules covered by one Y function. A macroscopic double
scattering term involves two sets of molecules each covered by Y functions, and these are
coupled by propagators & * and & not covered by correlation functions as shown in figure
4 f. Similarly the macroscopic triple scattering shown in figure 4g involves three Y-covered
sets of molecules coupled by two pairs of propagators & *&, etc.

We now discuss single scattering.
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(b) Macroscopic single scattering

Single scattering is governed by the kernel &, figure 4d. Recall that & also determines the
total scattering when &*¢ is replaced by & in (3.9); but we shall henceforth work in terms of
the weight field ¢ so that the total scattering is determined by .# through (3.5), and ./ is
composed of single scattering %, double scattering ¥ : % : %, etc.

The simplest single scattering term is the first term of (5.6) coming from the first term of
figure 4d:

Sinkg(naﬁfv L EF-ete, 8, Uy, dx, dx,. (5.7)
This term has already been discussed in §4 in the context of the complete scattering process
from source to detector. As we saw in (4.11) we get a sum over all modes of & and ¢ of a  product
of a geometrical weight factor W}, and a differential scattering cross-section o7;(§;) d2/deQ for
scattering in the medium into the differential solid angle dQ with scattermg vector §,.

The weight factor W, contains the magnitude of the relevant modes of & and & and the
volume |I7j',| of the proper scattering region 17;., = 17]9 N V1. Here the cross section 0, depends
only on local conditions, the relative orientation of the polarization unit vectors and the
scattering vector §;, for waves in the medium.

To study the scattering process in the medium separately we consider single modes (5.1) for
& and ¢:

o®(§) = ky(ne)? (0'-0°)2 JUz(r) exp (ig-r) dr. (5.8)

This (second order) contribution to the cross section has a particulary simple form. It is the
Fourier transform of the two-body Ursell function

Uy(x,—X,) = Uy = gro— 1+ 10710, (5.9)

which is the usual pair-correlation function g,, —1 extended to include also the self-correlation
n~'0,, = n7'0(x; —X,). This means that ¢} also contains a one-body term proportional to n,
namely

nakd (@ 59)2, (5.10a)

in addition to the two-body term of the form

202k (8- 5° f [g,0(r) — 1] exp (i§-7) dr. (5.105)

The two-body term (5.105) is proportional to n* apart from a weak dependence on n through
g2 and §; see the discussion near (II 3.4).
There are two terms at the third order, the second and third terms of figure 4d. The
contribution to the scattering has the same form as the lowest-order (second-order) term shown
n (4.11), except that the simple Fourier transform (5.8) is replaced by a more complicated
structure, namely (for single modes)

kg (not)® ff D°- B exp (il (x;—x,) +1k°+ (x, — %,)]} Uyps dx, dx, + c.c.
(5.11)
Here c.c. denotes the complex conjugate of the first term.
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This third order contribution has the same character as the second order term. It has the
form (4.11) with the same geometrical weight W}, and with a local cross section o7;: but the
cross section does not depend on a scattering vector §;, alone. It depends on the wave vectors
of the incoming and scattered waves independently. This point is worth stressing because the
phenomenological theory of Ornstein & Zernicke (1914, 1918) predicts the scattering from
fluids near the critical point to be the Fourier transform of some pair-correlation function
(which in simplest interpretation is the usual molecular correlation function). Terms like (5.11)
make it hard to believe that the Ornstein—Zernicke formula can be supported by the
microscopic theory in any simple way when intermolecular correlations are of the order of the
wave length or larger, i.e. for critical scattering.

When correlation lengths are short, on the other hand, the phase factors in (5.8) and (5.11)
do not matter, and in this case several orders of the expansion of macroscopic single scattering,
figure 4 d, collapse into the simple form of the Einstein light scattering formula as we shall show
in §7.

(¢) Backscattering coherence

At fourth order the macroscopic single scattering expansion contains three terms in U, ,,,,
which have the same general character as the third order contribution. But the remaining
fourth order terms, the last three terms shown in figure 44, contain a product of two Ursell
functions, and these terms behave differently. Recall that an Ursell function is short range in
the sense that it vanishes whenever the distance between any two of its arguments become large
compared with a correlation length. A group of points covered by an Ursell function we shall
refer to as a ‘cluster’. Thus we are dealing with two-cluster terms here.

The first two of these two-cluster single scattering terms contained in %,,,, at the fourth
order are

(na)"J Ud,, Fyye F5, Uy Uy dxs, (5.124a)
|4

and (no)* F¥, Fpy U,y U (5.126)

Because we look at these terms one by one we can here use a simpler notation for the variables
than in the sum (5.5). The contributions of (5.124, ) to the scattered flux are (with variables
relabelled)

¢

—SEkﬁ(na)"fV ch’f-s;" 8y Foy Fyy 6, U, Uy dx, ... dx,, (6.13a)

and ékﬁ(”“)"J f Y Fiyefe, Fuy-6,U,, Uydx, ... dx, (5.13b)
vV vV

whereas the contribution from the last term shown in figure 44 is the complex conjugate of
(56.13a).

In each of equations (5.134, b)) we have two clusters, one consisting of molecules at x, and
x; the other of molecules at x, and x,. In the integrals these two pairs of points are
uncorrelated, and when the distance between x,, x; and x,, x, is increased the integrand goes
to zero very slowly through the product of two propagators &, that is roughly as r 2 with r the
distance between the two clusters. (In (5.13a) there is an additional oscillatory factor.) Thus
the terms (5.12a, b) are long range and their contribution to the scattering is not of the form
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(4.11). Take, for example, a case where & and & are sums of modes (4.10) and (4.8) and
consider a single pair of modes j, ! contributing to a sum over modes as in (4.11). The integrals
of the j, / mode will be effectively restricted to the region 17]., = 17;’ N Vi, but in contradistinction
to the second order case (4.11) they will not be proportional to the volume |I7j',| of the region,
and they will not define a local effective scattering cross section. We shall return to these
geometrical features of (5.13a, b) in connection with macroscopic multiple scattering in §5 (d).

The term (5.135) appears to be the more interesting one so we discuss this one first and
return to (5.13a) near the end of the present subsection. For simplicity we start by looking at
the two-body term contained in (5.134), namely

ékgnza‘* f f EXFr e F,y E,dx, dx, (5.14)
VJv

coming from the term n %8,,d,, contained in U,; U,,. In (5.14) the field at x, is scattered by
a molecule and propagated to another one at x; and vice versa for the conjugate field; and the
two ‘exchanged’ branches of the wave then create the radiation to the detector.

Non-local exchange terms like (5.134) or (5.14) appear at all orders beyond the third. They
give rise to ‘coherent backscattering’ (Akkermans et al. 1986; Stephen 1986). Here the term
‘coherent’ does not imply coherence with the incoming wave so we shall refer to the
phenomenon as ‘backscattering coherence’. Terms of a structure similar to (5.14) have been
discussed in association with radar backscatter from plasmons (Watson 1969) and with
propagation in turbulent atmospheres (De Wolf 1971) as well as in the theory of electrons in
impure metals (see, for example, Bergmann 1984).

The phenomenon of backscattering coherence has recently been observed in the laboratory
in light scattering from suspensions of dielectric particles (Kuga & Ishimaru 1984; Van Albada
& Lagendijk 1985; Wolf & Maret 1985; Kuga e al. 1985; compare also Etemad ef al. (1986)
and Kaveh et al. (1986)). One observes a narrow peak of scattering in the direction opposite
to that of the incoming wave, an effect referred to as ‘backscattering enhancement’ (Kuga &
Ishimaru 1984).

In the context of light scattering from inhomogeneous media it has been discussed
theoretically by Tsang & Ishimaru (1984, 1985), Golubentsev (1984), Stephen (1986),
Stephen & Cwilich (1986) and Cwilich & Stephen (1987%). But backscattering coherence has
not previously been recognized in molecular light scattering theory.

To see why (5.14) gives rise to enhanced backscattering choose a pair of plane wave modes
for & and ¢ from (4.10) and (4.8) to get

g%kﬁ na J ] f ‘76‘-97;"2-6"60-3712-6‘ exp [i(& 4 k°) - (x,—x,)] dx, dx,. (5.15)
Here ¥ denotes the proper scattering region 7' n V° for the modes. The integrand in (5.15)
is long range and the phase factor therefore results in a narrow peak for scattering in a direction
exactly opposite to that of the incoming wave for which Re (k'+k°) = 0 and the exponential
becomes unity apart from a damping factor. Away from the backscattering direction the
integral in (5.15) will decrease in magnitude because of the oscillatory exponential. So (5.15)
contributes mainly to backscattering where the scattered wave may trace exactly the same path
as the incoming wave in the opposite direction, suffering the same reflections and refraction as
the incoming wave. We note that it is the longrange (radiation) part of propagators that is
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important in backscattering. The same remark applies to multiple scattering as we shall see in
§5 (¢) below.

In the special case of exact backscattering equation (5.15) equals the corresponding double
scattering term coming from (5.21) (below) with single modes. So the contribution from this
double scattering term is doubled in the backscattering direction by the contribution of the
corresponding exchange term. A similar remark applies to other multiple scattering terms
composed of local single scattering and corresponding ‘ cyclic’ exchange terms described below.
This means that backscattering enhancement is important when macroscopic multiple
scattering is; so it should be detectable in critical scattering, in particular.

The interpretation of the original term (5.134) is now clear from the discussion of the two-
body term (5.14) contained in it. The term (5.135) represents exchange scattering with two
clusters rather than just two molecules. And there are two-cluster terms of similar structure
with larger clusters such as

("“)5f F o Fau Fys Upga Ugs dxy, (5.16)
v

at order five from (5.5) with variables relabelled. Here the propagation from x, to x; described
by &,, takes place inside the cluster consisting of molecules at x,, x, and x,. The common
feature of (5.124) and (5.16) is that two clusters are connected by two propagators & or & *
that ‘exchange’ fields between the two clusters. The sum of the infinity of terms of the form of
(5.125) or (5.16) corresponds to one term in the scattering from suspensions of macroscopic
particles, the one treated by Tsang & Ishimaru (1984).

The Y functions also generate terms corresponding to all of the higher terms called ‘cyclical’
by Tsang & Ishimaru (1985). (We call them cyclic in this paper.) The simplest contribution
to the three-cluster cyclic term is

(”“)GJ F Y F 3y Fog Fsg Upy Ugs Ugg dx, dxs, (5.17)
viv

at order six or the still simpler three-body term contained in the flux calculated from it, namely

J f EXFH T e¥e, Fl Foy 8,dx, dx, dx,. (5.18)

There is an infinity of three-cluster terms of a similar structure making up the equivalent of the
cyclic term with three particles in scattering from suspensions.

In addition to the cyclic terms there appear multi-cluster single scattering terms of different
character. There are exchange type terms with two clusters connected by more than two
propagators. Such terms are not sufficiently long range to give rise to narrow backscattering.
And there are terms like (5.134) that are not of exchange type. Although the integrand of
(5.13a) is long range the product of two propagators & carries an oscillatory factor in
contradistinction to (5.134) (and to double scattering terms) which contain a product F *&.
Terms like (5.13a) are best understood in terms of self-interactions and are conveniently
discussed in relation to the corresponding terms in the refractive index theory.

In the refractive index theory (part II) self-interactions can be associated with an effective
molecular polarizability £ defined by (II 6.94) and (II 6.204). It is natural to ask what role
B plays in the theory of external scattering, and we shall briefly comment on that question.

The effective polarizability f was shown in part II to replace the polarizability a of an
isolated molecule. This replacement was exact at the lowest order in nf, but terms
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corresponding to (5.12) prevented an exact formulation in terms of £ beyond the first order
in np.

From the relation (2.22) connecting the refractive index theory and the external scattering
theory it is clear that processes involving £ in the refractive index theory produce terms in
which a propagator F belonging to # becomes replaced by a radiator S: # becomes S{f(x, w)}
which is closely related to & (x,x;k,v) (connecting a point x with itself) as comparison of
(2.37a) and (II 6.94) shows. But in S{f(x, )} the point x represents the position of a molecule,
whereas x in &% (x,x;k,v) is unrelated to molecular configuration. Because the weight field
is an absolutely essential part of the scattering theory an effective polarizability would not seem
to be a fruitful concept in the scattering theory. However, this conclusion does not exclude the
utility of introducing g elsewhere in the expression for the external scattering.

We mention a somewhat crude attempt in this direction (Hynne 1977) leading to a result
(equation (7.22) there), which has been obtained before by Yvon (1937, see his equation
(333)) and Vuks (1968, equation (13)). Note that the attempted transition to a bulk scattering
theory by Hynne (1977) leads to spurious results for the screened radiator corresponding to
(4.1556) here; but results for the total scattering like equation (7.22) there (referred to
above) are independent of the unphysical approximation to the radiator used there. (Of course
all of the rigorous results of that paper remain correct as well.)

We shall not attempt a systematic study of the consequences of using the bulk approximation
(2.36 ) to the propagator & . Summation of the contributions from self-correlations and ‘small
spheres’ accounting carefully for various types of terms as we did in the paper IT might lead
to results useful for numerical work and even to useful concepts. But the complexity caused by
the problem of divergences and the lack of immediate physical motivation here has so far made
us refrain from undertaking this study.

(d) Macroscopic multiple scattering

Macroscopic multiple scattering is exemplified by figure 4 f, g exhibiting double and triple
scattering. Multiple scattering diagrams are composed of several single scattering diagrams
connected by pairs of double lines (representing the pair of propagators & *& ). For simplicity
we shall first describe multiple scattering composed of local single scattering, i.e. of single-
cluster single scattering.

Restricted this way multiple scattering agrees wholly with phenomenological ideas as
illustrated in figure 5a, ¢ for double and triple scattering. The first of the double scattering
terms of figure 4 f (contributing to A, ,,,) is

(”“)4'%;!‘2 F 34 Uyy Uys. (5.19)

The contribution of (5.19) to the scattered flux through (5.3) is

é—k“ na) J Jé”* Ferey Foy 8, U, Uy dx, ... dx,. (5.20)

In particular (5.20) contains the two-body term
2cx“f f EY-F Y- e¥ ey Fyy - 8, dx, dx,, (56.21)
VJv

which is the simplest of all multiple scattering terms.
23 Vol. 330. A
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Ficure 5. Rays indicating contributions to double scattering, () and (4), and triple scattering (c) for the same
scattering geometry as used in figures 1 and 24, ¢. Note that a multiple scattering process is less restricted than
a (local) single scattering process, which must take place in the proper scattering region shown shaded
(compare with figure 1¢). Multiple scattering can start by a scattering event anywhere in V! and end with one
anywhere in 7° with possible intermediate events anywhere in the medium. Note also that propagation
between two scattering events is surface dependent because the propagator & is. Together with a direct
contribution to double scattering shown in (a), for example, there are also several in which the intermediate
propagation involves one or more reflections in the surface; (4) indicates one contribution with a single
intermediate reflection.

Equation (5.21) represents a process of the character depicted in figure 5a. The pair 5 &,
represents the incoming wave being scattered at a point x, in the region V' where &, is non-
vanishing. (The incoming field in vacuum and the refraction at the surface are represented by
the associated equation (3.14) determining & from the external field.) The scattered wave
propagates from X, to X, as described by the pair of propagators & §, &,, and is scattered again
at x,. The final propagation from x, to the detector is represented by & &,; the outgoing wave
outside V' and the refraction at the surface are represented by the associated equation (3.1¢)
for &. The integration with respect to x, is effectively restricted to the region V° where & is non-
vanishing; so the second scattering process can only take place in 7°. The regions V' and 7°
may each correspond to several modes; figure 5 shows only those not associated with internal
reflections.

The more general double scattering term (5.20) (in which (5.21) is contained) behaves in
the same way as (5.20), but molecules at x, and x, are each replaced by a cluster of two
correlated molecules.

Double scattering depends significantly on the scattering geometry (beyond the dependence
through & and ). This is so because the product #*% connecting two clusters goes to zero
at large distances 7 essentially as

r2exp (—7r). (5.22)
Here 7 is the extinction coefficient (I 5.39), namely
T = 2ky Im (m). (5.23)

Usually 7|x—x’| < 1 for any pair of points x,x” in ¥ when V has the size of an ordinary
laboratory scattering cell. This condition applies as long as the thermodynamical state of the
fluid is outside the critical region and the frequency of the light is away from resonances of the
molecules.

The range of the propagator & can be assessed from the form (2.364) of the translationally
invariant approximation to it, derived in §4 of part II. The propagator & is surface dependent.
And as a consequence the intermediate wave can be reflected in the surface on its way from
the first to the second scattering event as indicated in figure 54. Such contributions are also
contained in the theory as a result of the reflected parts of &, discussed below (5.39). (In
addition there are interference terms between direct and reflected parts.)
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The generalization of the interpretation to multiple scattering of higher order is now
obvious. At each order multiple scattering is superimposed on the collective effects associated
with the incoming and scattered waves. Thus any scattering term contains the establishment
of a wave in the medium through & in terms of E as determined by (3.14); and similarly it
contains all the surface effects associated with the transition of the scattering from the medium
into the empty space surrounding V' through the weight field ¢ as determined by (3.1¢) with e
defined by (4.2).

Any multiple scattering process must therefore start with a scattering event in a region where
& is non-vanishing and end with one in a region where ¢ is non-vanishing as we noted already
at the end of §3. Intermediate scattering events appearing in triple and higher-order multiple
scattering can occur anywhere in V as indicated for triple scattering in figure 5c¢.

Macroscopic multiple scattering composed of local scattering events is formally very similar
to nonlocal single scattering of cyclic type. Compare, for example, (5.21) with (5.14). In each
of these terms two uncorrelated points (molecules) are connected by two propagators, & * and
& . Thus the integrands are long range and each term depends on the scattering geometry in
a non-trivial way. Nevertheless only (5.21) has double scattering character. It is independent
of the scattering direction (except for a dependence through polarization and through the
surface dependent parts of the &s). In contrast the process (5.14) gives rise to narrow
backscattering as we have already mentioned. As another difference (5.21) gets contributions
from configurations (x,, x,) with x, anywhere in 7! and x, anywhere in V°, whereas (5.14) can
only get contributions from configurations with x; and x, both in the proper scattering region
7' n 7° shown hatched in figure 5a. Thus (5.14) certainly does not have double scattering
character, and it is physically sensible to distinguish the two classes of terms.

We now briefly discuss multiple scattering composed of multi-cluster single scattering
through an example. Look at the last term shown in figure 4 f. This is a three-cluster double
scattering term which contains a three-body term, namely

é%kﬁnaoc“ f J f EX T, T, & ey Ty Fpye 8, dx, dx, dx,, (5.24)
VJVJV

in which the three molecules are completely uncorrelated. In a term like (5.24) the distinction
between macroscopic multiple scattering and multi-cluster single scattering looses some of its
significance. The intermediate process involving the pair of propagators & §, and &, does not
quite have the characteristics of a double scattering process described above, and the
backscattering feature is not so clearly associated with the propagators &}, and &,,. The
existence of such multi-cluster scattering processes certainly demonstrates that light scattering
in a molecular fluid is a very complex phenomenon when attention is paid to the details. Note,
however, that terms like (5.24) always contain a to a power integral larger than or equal to
six and when properly handled this is an indication that even in dense liquids their numerical
significance will be small. The problem with (5.24) is that it actually diverges. We therefore
look at this problem next.

(¢) Solution of the divergence problem

We have now obtained a macroscopic multiple scattering expansion. Unfortunately there
remains a problem of convergence. The terms of the multiple-scattering expansion are not
convergent as integrals order by order, although the series is convergent in its totality. This

23-2
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problem is a technical one in the sense that it affects neither the formal structure of the theory
nor its interpretation. Nevertheless, it is necessary to deal with the problem to reach a well
defined result that can be used for numerical evaluation.

We may illustrate the problem by looking at the two-body terms (5.14) and (5.21) as
examples. In each of these terms a product of two propagators & connects the two points x,
and x,. For present purposes we may think of & in terms of the approximation (2.36) or we
may note that & contains F as the first term of the rigorous expansion (2.35). At short distances
r=|r| = |x,—x,|, & is roughly proportional to

(BFF—U)r 3, F=r/r, (5.25)

so each of the integrals (5.14) and (5.21) diverges at x, = X,.
The terms (5.14) and (5.21) arise from products of delta functions contained in the
correlation functions

U13 U24 = Gla 024 - Gl3 - 024 +1 (5-26)
and Uiy Uy = Gy Gy3— Gy — Gy +1, (5.27)

appearing in (5.135%) and (5.20). The term (5.26) arises from Y,,, (see (2.39)), and G,;G,, is
cancelled against a similar term in U,,,,. This can be seen from the fact that the explicit
expression (II 7.13) of Y,5, does not contain G,;G,,.

This means that the divergence of (5.14) is cancelled, and in fact (5.14) is replaced by the
convergent term

S%kﬁn%c“ f f EX T, g6 Ty 8,5, dx, dx,. (5.28)
VJv

(The factor g,, comes from the term 0,505, g4 in G y3, (see (II 2.11)), and G,,3, is contained
in Y,3, as (II7.13) shows.) So far as the multiple scattering expansion is concerned the
divergence of (5.14) is not a problem, therefore. Even so the divergence of (5.14) should be
handled in the same way as we do that of (5.21) below. Only contributions from radiation parts
of propagators give rise to proper backscattering. The procedure for backscattering can be
inferred from the treatment of the divergence problem associated with macroscopic multiple
scattering.

The divergence of (5.21) is a problem in the multiple scattering expansion. Actually the
divergence is compensated by one contained in Uj,,, (or in Y,;, (II 7.13)). But now the
compensating divergences appear at different orders of macroscopic multiple scattering, so each
order is not convergent in itself.

It is plainly the Coulomb terms of propagators that cause the divergence problem in the
formal multiple-scattering expansion (3.5) with (3.8). (The distinction of Coulomb and
radiation parts of propagators was introduced in (II 5.9) and is further discussed below.)
Fortunately the Coulomb parts of & in the operator 2 do not generate genuine multiple
scattering. As a consequence the Coulomb contributions can (and should) be transferred from
higher to lower orders of multiple scattering. In this way macroscopic multiple scattering is
directly associated with the radiation parts of propagators.

These facts suggest that we split all propagators into Coulomb and radiation parts and
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transfer the Coulomb parts to the relevant lower order of multiple scattering. To this end we
write the operator Z as a sum of two terms

X =%+ %, (5.29)

with indices C and R referring to ‘Coulomb’ and ‘radiation’. Equation (3.7) then takes the
form

M=L+L (ZA+ZR): M. (56.30)

This equation may be quite generally rewritten as two nested equations:
M=L'+L %y M, (6.31a)
=L+ Z. L, (5.31b)

independently of any interpretation of %, and Z;. To verify (5.31) substitute (5.316) in
(6.31a) and use (5.31a) itself to get (5.30).

The idea is that shorter-range contributions of the formal multiple scattering expansion are
summed in the operator £’ by equation (5.314); and the expansion (5.31a) then generates
each order of macroscopic multiple scattering, physically well motivated and well defined.

We still have to choose a division (5.29) that realizes that goal. Such a division is hardly
unique, but we propose a natural one. We first divide & into Coulomb and radiation parts

F =6+R (5.32)

working from the expansion (2.35) with each F expressed as a sum C+R of a Coulomb part
and a radiation part as in (II 5.9a). We define € as the sum of all terms from (2.35) in which
the free variables x,; and x, are connected by a chain of Coulomb part propagators C and delta
functions. Equation (5.32) then defines Z; in other words Z is the sum of all terms from (2.35)
containing at least one radiation part propagator R in the direct chain between x, and x, (i.e.
not in a loop). Defined this way Z is long range much like R and € is shorter range like C.
Both € and 2 are surface dependent and both are complex. We shall regard the propagators
€ and R obtained in (II5.94) as bulk approximations to € and £ although we have not
demonstrated a formal equivalence.

We now define &, from Z by replacing the kernel &}, &,, by R}, %, in equation (5.2).
The operator &% is then defined through (5.29). Notice that Z contains two cross terms
between € and Z as well as a term in 67, %,,.

As an example of the use of the machinery described above to eliminate the divergences of
the multiple scattering expansion we look at the two-body double scattering term (5.21). As it
stands it is clearly divergent at x, = x,;. Macroscopic single scattering now sums terms included
in higher-order multiple scattering in the formal series (3.5) with (3.8). When these terms are
transferred from (5.21) to the macroscopic single scattering there remains

J® = é%kg ot JVJ EX R}, ef ey Ry, - 6, dx, dx,. (5.33)
v

The terms removed from (5.21) associate with the single scattering term at fourth order in ne.
More specifically they go together with the terms coming from the terms in ¥;,3, containing a
factor n720,, 8,3 and no other delta functions, namely

n_2é‘14 0a3(g12—1). (5.34)
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When the terms transferred from (5.21) are combined with the fourth-order single scattering
term from (5.34) the contribution from the ‘ —1’ of (5.34) is cancelled for all but the radiation
part of the ¥, &,, pair. So we get:

ékgnwf f EXF¥ e e, Fy 8, g,,dx, dx,— I, (5.35)
VJv

This result is obviously convergent at x, = x;; and the two integrals of (5.35) combined are
also convergent when the integration with respect to x, is extended to all space (with x, fixed
inside the scattering region). The integration over x; then gives the scattering volume. The
single scattering term (5.35) is therefore well defined and has the character of bulk scattering
expressible in terms of an effective scattering cross section of a molecule in the many-body
system.

If & and & are plane waves of amplitudes K, and @ vanishing outside 7' and e
respectively we find that the most important (pure Coulomb) contribution of (5.35) is

B P k@97 431 [t o] (5.36)
0

This is the contribution to the flux per unit solid angle in vacuo, scattered from the region V =
7' n V° with volume |V]. If we calculate the scattering per unit solid angle in the medium we
may divide by a weight factor as in (4.11) and obtain the factor in curly brackets as the
contribution to the differential scattering cross-section.

The simplest double scattering term (5.33), on the other hand, has a significant surface
dependence. We see this clearly if we use the bulk approximation R and look at the asymptotic
part,

R(x,x";0) ~ k3(U—FF) 1 Vexp (imkyr), 7= |x—x|—> 0. (5.37)
We then get from (5.33)

(U—#F)-5]°
x —x'[?

E;%IEOI2 |2o|® kg nPar’ LO dx L_i FILE , (5.38)
where & and ¢ are chosen as in (5.36). The unit vector 7 points in the direction of x —x’. The
geometrical features are illustrated in figure 5a. The double-scattering process is not a local one
and gets contributions from regions outside the proper scattering region, the intersection of the
illuminated and observed regions shown shaded in the figure. Because of this property the
double scattering process depends explicitly on the shape of V irrespective of any implicit
dependence through & and &. Notice, however, that & and ¢ retain their simple physical
significance even in connection with complex multiple-scattering processes as figure 5a
indicates. Calculations (partly numerical) of the dependence of double scattering on the
geometry have been made by Reith & Swinney (1975), Beysens & Zalczer (1978), Bray &
Chang (1975) and Boots et al. (1975a).

However, & itself is surface dependent, and in the continuum approximation described in
part II takes the form (IT 4.13),

IEV(x, x'w) = F(x, x';w) +f(x, x5 w), (56.39)
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with f containing the surface dependence. When F,, is split into Coulomb and radiation parts
f must go with R so that

R(x,x";0) = R(x,x";0) +f(x,x;0) (5.40)

Figure 5a illustrates the main contribution to the double scattering (5.33) which comes from
the R}, R,, part of the total kernel (in the continuum approximation)

@31"2 '%Zl X R;l; RZI + ﬁ;; f21 + f;k2 RZI + i;'31"2 i.:21‘ (5‘41)

Figure 55 indicates a contribution of f¥f,, with the character of an internally reflected
(spherical) wave. For a geometry with several plane surfaces, we expect f to have several modes
giving rise to multiple internal reflections in the internal propagation between two elementary
scattering events in a double scattering process. We emphasize that the precise interpretation
of the contribution f%,f,, given above rests on an appeal to macroscopic optics for the character
of the solution to equation (II 4.12). The cross-terms of (5.41) evidently represent interference
between direct and reflected waves.

The characteristic feature of macroscopic multiple scattering is that intensity is thrown
» 1, in which
indices j and [ belong to one cluster, whereas p and ¢ belong to another one. It is this property

between clusters (groups of correlated molecules) as described by the pair &

of multiple scattering that makes the intermediate propagation between single scattering
processes long range and the multiple scattering processes surface dependent.

The two-body double scattering (5.33) belongs naturally with a four-body term coming from
the corrected first term of figure 4 f. In a first, somewhat intuitive, microscopic treatment of
macroscopic multiple scattering Oxtoby & Gelbart (19744, 5) have already analysed
contributions that may be said to be contained in this four-body term. These authors, and
subsequently Boots et al. (1976) give estimates of the contribution to double scattering.
Experimental depolarization studies, which appear to illustrate the behaviour of macroscopic
multiple scattering close to the critical point, have been published by Reith & Swiney (1975)
for xenon and by Trappeniers et al. (1975) for carbon dioxide. We find the theoretical situation
close to the critical point so complicated that at most only a qualitative interpretation is
possible there.

(f) Multiple scattering and damped propagation

We have now reached a strictly microscopic description exhibiting the structure of light
scattering in macroscopically recognizable form. Transmission of light in and out of the
medium and the associated surface effects are isolated from scattering in the medium through
the quadrilinear functional (5.3) with separate equations for & and . Scattering in the medium
is resolved in macroscopic multiple scattering naturally superimposed on the collective surface
effects. Single scattering in the medium includes non-local processes responsible for
backscattering and the theory is capable of distinguishing these from genuine multiple
scattering.

This structure seems entirely natural, but the presence of macroscopic multiple scattering
raises a number of questions.

Can an effective scattering cross section be defined despite the highly non-local character of
macroscopic multiple scattering?
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How can the appearance of terms like (5.38) in the scattering theory be compatible with
the relation to the refractive index theory where all terms have oscillatory integrands?

How does multiple scattering manifest itself in the propagator & in view of the close relation
between & and &, (2.38) and (I 4.26), and the fact that & includes the effect of macroscopic
multiple scattering through the second term of (2.41).

We shall briefly comment on these questions now. In a sense scattering from single clusters
is the smallest unit of macroscopic character. But it is not simple, because such scattering
processes must be combined in many different ways. So macroscopic single scattering
represented by the corrected operator £’ is the most useful macroscopic unit of scattering in
the medium: single scattering events combine to form multiple scattering through pairs of
propagators simply.

It would seem natural to define a differential scattering cross section from single scattering
in the medium despite the complication of multi-cluster single scattering. Working from %’
substituted for . in (5.3) we make the steps that lead to (4.11) for the lowest-order term. The
multi-cluster terms do not quite take the form (4.11). They are not proportional to a scattering
volume, as we have already noted. If they are included we must use an average value over the
relevant volume much as in (I 5.40). Light scattering is simply more complicated than one
might expect from macroscopic ideas: if and how it is useful to define a cross section is a matter
of choice; but we note in §7 that the Einstein light scattering formula does include multi-cluster
terms in approximate form.

Leaving aside the problem associated with multi-cluster terms the proposed definition of a
differential scattering cross section based on macroscopic single scattering in the medium as
determined by (5.314) raises the important question of the consistency of such a differential
cross section with the total cross section defined in (I 5.42). Recall that o was defined on the
basis of the total incoherent scattering from the region V and is related to the extinction
coefficient 7 calculated from the refractive index by the exact relation

no =71 = 2kyIm (m). (5.42)

Although we have no formal proof we believe a differential cross section calculated from
macroscopic single scattering will be essentially consistent with (I 5.42) in the sense that the
total cross section (integrated over all angles in the medium) satisfies (5.42). We shall support
this view by a comparison of the two-body contribution to the differential cross section to be
derived in §6 with (II 3.17) for 7; and we now explain in physical terms why consistency can
be expected.

The scattering process in the medium from some small region well inside the system results
in a certain angular distribution of scattering. The effect of the collective surface effects and of
macroscopic multiple scattering is to redistribute the scattering. The total scattering is
unchanged and can therefore be obtained either from the single scattering process in the
medium or from the total scattering from the entire region V.

There is, however, a paradox to resolve: namely the compatibility of multiple scattering of
the form (5.38) with extinction due to scattering computed via the refractive index theory in
part II. The integrand of (5.38) contains no oscillatory factor. At first sight this makes the
scattering theory incompatible with the refractive index theory because all terms there contain
oscillatory functions in their integrands and these oscillatory terms are important to the
convergence of the integrals. However, the exact relation (5.42) shows that no such
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incompatibility is possible: and any conflict is resolved by observing that one refractive index
term at order p corresponds to p—1 scattering terms generated by use of the operator &.

We shall explain the essential point by an example in the unscreened theory, and for clarity
we write the radiation reaction 2ik3 U as F,, (compare (2.16)). To the term

n?at| V| Trf f FrotFape For Ty g1p dx, dx, (5.43)
vJVv
in the refractive index theory there corresponds the sum of three terms,

ko[Re (m)] ™' n*at|V|! TrJ dxlj dx, g12[S12° Fas Foy + Fly- Sop Foy + Fly - FJ5- Sy 'Tll$
v v
(5.44)

in the scattering theory. The middle term of (5.44) contains the two-body double scattering
term (5.38) essentially. We sum (5.44) over polarization states of the scattering and integrate
over all scattering directions using (2.23). From the asymptotic behaviour (I 2.35) of F we then
see that the middle term of (5.44) has the non-oscillatory integrand r~2 as in (5.38). However,
the other two terms of (5.44) together contain an integrand — 27 ?sin® (k,7), and the integrands
of the three terms therefore combine in the net oscillatory integrand 2 cos (2k,7) ; in complete
agreement with the imaginary part of (5.43).

The consistency exemplified through the relation of (5.43) and (5.44) demonstrates a
connection between multiple scattering and damped propagation in a rather indirect way:

When there is multiple scattering the propagation of scattering radiation in the medium is
necessarily damped. The first and last terms of (5.44) contribute to the screening of the one-
body scattering term, and they are part of the collective process describable as ‘propagation
of scattered light in the medium’. They must be associated with damping because they contain
a single radiation reaction factor. Thus, only when we include terms representing damping of
the scattered light together with multiple scattering terms can we get agreement with the
refractive index theory.

We can also see a relation between multiple scattering and damped propagation more
directly in the relation between radiators and propagators. Recall that propagation of scattered
light to the detector is described either by the weight field & or by the radiator &. The
difference is that & includes multiple scattering through the second term of (2.41).
Furthermore it is related to the propagator & by a Bohr—Peierls—Placzek relation (I 4.26) so
the effect of multiple scattering can be expected to appear in & as damping. To see how
damping is contained in & we may refer to the approximation (2.365).

The screened propagator F has wavenumber mk, so it gains the damping factor exp (—irr)
under the differential operator: 7 is the extinction coefficient (5.23). To find the terms
associated with damping we therefore compare the expansion of F as the iterated solution of
(IT 4.10) with the corresponding expansion of (2.34) for &, namely

fiw=Fm+f J F12-A23-F30dx2dx3+f J Flo Mgy Faas Ay Faodx, ... dxg+ ...
VJvV |4 14
(5.45)

and conclude that to a good approximation damping is introduced through Im (A). Because
of the connection (I 4.26) between & and Im (&), we can use (5.45) and calculate Im (&)
in order to understand the role of damping in this relation.
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Up to terms involving only one Im (F) kernel we find from the expansion (5.45)
Im (#,,) = Im (F,,) + fv L Im (Fp,) - Agys Fypdx,dx; + L L Flo Ayy- Im (Fy) dx, dxg
+L”,Lgm.,\23.1m(F34)-A45-9750dx2...dx5
+f f Flo-Im (Ay,) - Fypdx, dx,. (5.46)
vJv

The last term of (5.46) is the approximate sum of all terms with kernel Im (A) from (5.45). The
remaining terms form the sum of terms with Im (F). Note that although the right side of (5.46)
is actually complex, its imaginary part is ignored in the approximation.

We may obtain another equation for Im (&) of a form strikingly similar to (5.46) from
(2.41) for & in the following way. We substitute (I 4.19) for gin (2.41), sum over polarizations
and integrate over all angles; then apply the Bohr-Peierls—Placzek relations (2.23) for S and
(I 4.26) for & and use the fact that & and A are symmetric as tensor kernels. The result is
almost (5.46). Indeed, the similarity is changed to identity if we in (5.46) complex conjugate
kernels to the left of Im (F) or Im (A).

The conclusion from this comparison is that to multiple scattering in & there corresponds
to a good approximation the effect of Im (A) in Im (&) and the effect of Im (m) in F. This can
be no exact relation because as equation (2.366) shows the refractive index appears also outside
the exponential in F. We take the relation between macroscopic multiple scattering and
damped propagation we have just demonstrated as another confirmation that the multiple
scattering expansion we have derived in the present section is physically well motivated.

In the analysis of the Einstein equation in §7 we calculate the extinction coefficient 7 from
the refractive index in the unscreened formulation. There we shall use a modification of the
result (5.46) : we approximate the first three terms by Im {F} with real m and retain the last term
as it is, thus

Im{F,} ~ §Re{m} k[ jo(£) U +3/,(E) (3FF—U)]
+J f F o Im{Agy} Fogdx,dxy, £ = Re{m}kylx,—x,|. (5.47)

Here j, and j, are spherical Bessel functions. Thus for small distances, § < 1 where j,(§) =
O(£7),Im{F ,} can be approximated by the constant Re{m}jU apart from the damping
terms contained in the last term of (5.47) which must be treated separately. These damping
terms play a special role in the proof of the Einstein equation.

6. SCATTERING IN A LOW DENSITY GAS

In this section we shall derive an explicit expression for the scattering in a molecular gas at
low densities. We shall derive the first two terms of a density expansion in an approximation
similar to the one we used in part IT for of the refractive index. These parallel calculations allow
us to compare single scattering in the medium with extinction due to scattering.

Recall that the relation (5.42) was proved in part I as an exact relation when ¢ was defined
through (I 5.40) on the basis of the scattering collected outside the material system. Here we
shall determine whether (5.42) is still satisfied in terms of the total cross section calculated from
single scattering in the medium.
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(a) Density expansion

Because we want a density expansion it is most convenient to work from (2.27) with (2.28)
which (implicitly) defines the operator .# in terms of unscreened propagators F. Subsequently
we must omit terms corresponding to macroscopic multiple scattering, therefore.

To obtain a scattering cross section from (2.27) we choose single modes for & and &
throughout the reglon V, separate off a geometrical factor corresponding to (4.114) and
introduce T and § by (5.1¢) and (4.15b). We then obtain the differential cross section for
scattering in the medium

d0' K2 °°”1
dQ 7 m Tr Y, (not) f del

xFf, ... F¥

.S

(q
(@-1)q" Zg(g+1) F(q+1)(q+2) F(p—l)p |p1K123 D (6‘1)

The factor |V|™ comes from omitting the geometrical weight while retaining all integrations,
and the factor m™! arises when § is introduced. The refractive index m must be understood as
Re{m}in (6.1). The form (6.1) is much more sensible than the rather formal definition (I 5.40),
but it is still necessarily defined as a global rather than local quantity because it includes
macroscopic multiple scattering. To develop a density expansion we integrate all self-
correlations (represented by delta functions). Radiation reaction terms are summed and
concealed in the complex polarizability (2.17). We then get the differential scattering cross
section up to terms in n?

ndo/dQ = [yPk2m ™ Tr{B,n+ (BL+B¢+B5) n*+...}, (6.24)
in which
B, = §11‘711: (6.25)
Bl = 5" Re ()51 § §.,-F, +y*F .8, ).
2T g e(y) A+ [12 a1t (Y810 Foy +y*F5-Spp) - 11y
+(7511'F12+7 Flo- 522) 21] (g12— 1) dx,, (6.2¢)

1 ~ o
Bs = |V|J f dx, dx2[’y2512-F21-F12+|y|2 Frz’szl'F12+7*2F* F3 12] |21g12
vJv

+J[73§12’ Foi+FiaFoy +y*yFly- §21‘ Fia-Fort...] 'illgl2 dx,+..., (6.2d)

1 u -
B, = m.f f dx, (31-"32['}’25114:12'F21'|'|'}’|2 F;"2-522-F21+'y*2F* F3 - 11] |11g12
viv

+J['y3§11' Fia*For-Fio +7*72F;k2'§22' For-Frat...] '721 grzdx,+.... (6.2¢)

The term (6.25) comes from J,, of (2.27) through a self-correlation contained in K{¥; the
remaining part of J,; appears in (6.2¢) as the first term in square brackets. The other terms of
(6.2¢) come from J;; and Jy,. In particular, the first term of (6.2¢) (containing $n) arises from
a ‘small sphere’ contribution defined through (2.12). The terms of (6.2d) and (6.2¢) arise from
terms of order p > 3 in (2.27).

The term in B;, namely

nlyl® ko (- 9)°, (6.3)
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is the complete one-body term. It is proportional to n and describes scattering from
independent molecules. All interactions in (6.3) are self-interactions through the all order
radiation reaction contained in y.

The term of (6.2) containing B}+ B3+ B} gives the complete two-body contribution to the
scattering. In this we substitute the density expansions (II 3.4) and (II 3.5) for g,, and T,, and
the expansion of m in the wave vector k of §. Only the lowest-order term of each of these
expansions contributes to the true two-body term, which is proportional to n*. The term Bj is
a finite sum of local contributions each containing the short range function (g,,—1) in the
integrand. The terms B} and B} are infinite series. Corresponding terms of these differ
essentially only in that §(x, x";k,v) in B connects ‘distinct’ points, X # x’, whereas x and x’
represent the ‘same’ point in Bj.

The first term of each of the series B and B§ contains an integral of three terms (in square
brackets). These first terms are surface dependent, whereas all the other terms of (6.24) and
(6.2¢) are not. In the surface independent terms the integration with respect to x, has been
extended to all space (assuming x, well inside V'), and the subsequent integration with respect
to x,; has provided a factor |V| entering a geometrical weight ¥ as in (4.11).

The surface dependent parts of BS and B} contain backscattering and double scattering
respectively. Because a differential scattering cross section must be defined in terms of single
scattering in the medium, we must omit the multiple scattering term from (6.2). Arguably we
should also omit the backscattering term. Both of these omissions are accomplished if we simply
omit all radiation parts of propagators as an approximation. We therefore now consider the
contribution to two-body scattering arising from the Coulomb parts of propagators F,
VV|x—x’|"t. We want to sum the series B§ and B}, and to further simplify the summation we
neglect the phase factors arising from S and T, that is we replace §,, and T, by the constant
tensors S,, and Tu- In this way the two series By and B§ become equal but any dependence of
the scattering on the scattering directions (other than through polarizations) is lost.

The sum of the terms with a factor S to the extreme left or right can evidently be expressed
in terms of the function 4, defined by (II 3.94) (Hynne 1974),

(o, T) =t [ | g = | e [ 901k T1 2 (6.4

The remaining terms can be written as an integral of a product of § and two sums. The result

may be expressed partly in terms of the imaginary part of 4,. We then find the differential
scattering cross section up to terms in n*:

ndo/dQ = nlyP ks {ly|dy+ (@) [n™ = 2B,(T) +3n Re (y) + 4 Re (yhy)
+3k5° Im (hy) —3lyl dy]}.  (6.5)

Here B,(T) is the second virial coefficient of the theory of fluids (II 3.85), whereas & and ¥ are
polarization unit vectors of the incoming and scattered waves respectively. The function d, is
defined as

2

exp [— @ (r)/ kg T]4nr* dr. - (6.6)

dy(0, T) = 3] f”

21
rP—2y Pty
If we choose a Lennard-Jones potential (IT 3.12) for ¢(r) then A,(w, T') and d,(w, T') become
functions of the reduced variables a®/y and 7,/7, in which a and ky 7, denote the
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intermolecular separation and the energy, each taken at the minimum of the potential curve.
Thus 4, takes the form (II 3.13) with (II 3.14), namely

_ ll3 7"') ll3 7’6

hy(, T) = B(;, T) B( —2—;,7), 6.7
_ [Pexp[w(28—1)]
B(z, w) —fo 2 d, (6.7b)
whereas d,(w, T') may be written as
_ (¢ %
dy(w, T) = D(y, T) (6.84)
0 2__ /4

D(zyw) =l | SPLE=0)] 4, (6.80)

o 1(2t=2) (14+2)?

The function D is a numerical function of the compléx variable z and the real variable w. It
is shown in figure 6. Notice the scaling by |z| in figure 65, which is made to exhibit its
asymptotic behaviour.

I T T T
0.5 S“)&/ .
I ]

0.3

D(z, w)
T
&\
lz| X D(z, w)

| I I . . .
0.2 0.4 0.6 0.8 20 40 60

w=T,/T Re (z) = d®/a

Ficure 6. The function D(z,w) describing the lowest-order contribution to the depolarization ratio (6.11) from
single scattering. Note the scaling in (8). (a) i, Re (z) = a®/a = 25; ii, Re(2) = 35. (b) i, w= T,/ T = 0.8;
i, w=04.

The result (6.5) agrees with (II 3.17) in the sense that the identity (5.42) is satisfied (despite
the approximations made to reach (II 3.17) and (6.5)) provided the frequency is well off
resonance (i.e. outside the line wings region defined below equation (II 3.24)). To see this we
sum (6.5) over two orthogonal polarization states and integrate the result over all scattering
directions. Note that the two terms in d, cancel. Then recall from §3 of part II that the last term
in (IT 3.17) equals the term in square brackets there when the frequency is well off resonance.

We view the satisfaction of (5.42) as (weak) support of the idea that the total scattering cross
section can be correctly calculated either from the surface-dependent total scattering from the
region V asin §5 of part I or from the differential scattering cross section based on macroscopic
single scattering in the medium. We believe that the inconsistency in the line wings region must
stem from differences in the approximations that underlie (II 3.17) and (6.5).

The terms (n™' —2B,(T)) in the square brackets in (6.5) form the beginning of an expansion
(I1 3.18) of the isothermal compressibility «,, of the fluid, as we noted in part II. These terms
are contained in the simplest single scattering term (5.8) ; the n”! comes from the one-body term
(6.10a), the —2B, comes from the two-body term (5.104). For small correlation lengths the
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exponential phase factor can be ignored in (5.8). The integral then reduces to (see, for example,
Hill 1956, p. 236)

f Uy(r)dr = kpky T. (6.9)

The k5. ky T appears as a factor in the Einstein phenomenological light scattering equation. By
virtue of (6.9) it also appears in a microscopic expression for the scattering, valid for small
correlation lengths and for not too high densities. This we show in the following section, which
is devoted to a proof that the Einstein equation is consistent with the microscopic theory away
from the critical point of phase separation.

The relation (6.9) applies when the correlation function is defined from a grand canonical
ensemble, i.e. for an open, isothermal system (see, for example, Hill 1956, p. 263). Actually the
present theory specifies a closed isothermal system so a canonical ensemble would be more
appropriate.

Unfortunately the integral in (6.9) is identically zero when U, is defined from a canonical
ensemble (see, for example, Hill 1956, p. 185). So the theory seems to depend crucially on the
choice of statistical ensemble. Of course, incoherent light scattering is caused by fluctuations
which obviously depend on the ensemble, i.e. on the precise specifications of the system.
Nevertheless, in so far as light scattering is a local process it must be largely independent on
whether the entire material system in open or closed, and the subtle problem can be explained
in terms of an analysis of the asymptotic behaviour of the distribution functions due to de Boer
(1940). The analysis is based on a modified cluster expansion (see Hill 1956, Appendix 7).
According to de Boer (1940), the pair distribution function g,(r) behaves asymptotically as

2,(r) > 1—nkpky TN, (6.10)

The deviation from unity is O(N "), which is extremely small compared to unity and entirely
without thermodynamical significance. When the phase factor is restored in the integral (6.9)
the tail of the canonical correlation function (6.10) yields a contribution to the coherent
scattering. But the contribution is of relative order O(N™!) and so is small compared with the
statistical variation of thermodynamical variables that fluctuate. This means that it is
legitimate to ignore the phase factor if we use the grand canonical distribution functions (which
have asymptotic values of unity). We get the same results as if we use canonical distribution
functions and retain the phase factor. So we shall continue to use grand canonical distribution
functions.

(b) Depolarization

The first term in curly brackets in (6.5) is independent of & and @, the polarizations of the
incoming and scattered waves in the medium. It gives rise to depolarized scattering. The
degree of depolarization is conveniently characterized by the depolarization ratio p which is
defined as the ratio of the scattering at right angles with polarization & perpendicular to & and
with polarization parallel to @.

At low densities p is governed by two-body depolarized scattering proportional to 7* in
relation to one-body non-depolarized scattering proportional to n. The limiting form at
vanishingly low densities is therefore proportional to » and we have

p R p,=nlimp/n (6.11a)

) n_>0
at low densities.


http://rsta.royalsocietypublishing.org/

A
A

/4
{

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

L A

A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

THE SCATTERING OF LIGHT. III 299

Two-body depolarized scattering may also get a significant contribution from real double
scattering (5.38). This term depends on the shape of the region as we discussed in §5. Its effect
may be minimized by suitable choice of scattering geometry, and we consider only depolarized
single scattering here.

In the approximation (6.5) we immediately find the depolarization ratio

2exp[‘kj§f)]r% dr, (6.114)

which agrees with the result of a direct classical argument involving the polarizability of a pair
of molecules (Silberstein 1917; Buckingham & Pople 19554, b; Buckingham & Stephen 1957;
Fromhold et al. 1978; Oksengorn 1983). When the pair potential is approximated by a
Lennard-]Jones potential this result becomes

po = nly| D(a®/y, T,/ T). (6.11¢)

For argon at room temperature and for radiation of wavelength 633 nm (for which z =
33.5—13.64 107® and w = 0.402) we find D = 0.319, and hence

0

33
G

Po = nlyldy(w, T) = %ﬂnWFJ P Y

0

po = (5.32x 1072 cm®) - n. (6.12)

This gives p, = 1.31 X 107® at atmospheric pressure. The result (6.12) is 25 9%, larger than the
experimental value (at A = 514.5 hm) of Oksengorn (1983) and 6 9, larger than the first term
of its expansion in a/a®. Further experimental and theoretical results are summarized in table
1. Related experimental results on the spectrum of depolarized scattering have been given by
Frombhold et al. (1978), Fromhold & Proffitt (1978), Barocchi & Zoppi (1978) and by Shelton
& Tabisz (1980). See also the model studies of Ladanyi et al. (1986) and the reviews by Gelbart
(1974) and Fromhold (1981) and references therein. Comparison of results from integrated
spectra and discussion of experimental discrepancies have been made by Oksengorn (1983),
Fromhold (1981) and others.

The temperature dependence of D(z,w) is shown in figure 64. The function has a minimum
at w=0.245 for 4’/a =33.5. This case applies to argon at optical frequencies and it
corresponds to 7' = 489 K or 216 °C. The temperature coeflicient is

2—";—‘12——%1022—3, (6.13)

and table 1 gives w?0D /0w for a few substances.

TABLE 1. THE TWO-BODY CONTRIBUTIONS TO THE DEPOLARIZATION RATIO ; EXPERIMENTAL
AND THEORETICAL VALUES AND THEORETICAL TEMPERATURE COEFFICIENTS

argon krypton xenon methane

/(1073 m?®) 1.668 2.484 4.045 2.616
a/(1071° m) 3.822 4.04 4.60 4.285
Re{z} = d®/a 33.5 26.6 24.1 30.1

/K 119.8 171 221 148.2

w=T,/T 0.402 0.574 0.741 0.497
(po/n)/ (1073 m?) 0.532 1.081 2.120 0.966
experimental 0.46° 0.73°
(w?*0D/ow) /1072 1.527 6.205 14.65 3.495

* Oksengorn (1983), 2n/w = 514.5 nm, room temperature.
* Thibeau ¢t al. (1970), 2n/w = 633 nm, T = 293 K.
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300 F. HYNNE AND R. K. BULLOUGH
The dependence on z is best presented by rewriting equation (6.8) as
Po = 2| D(z, w) nly|*/d®. (6.14)

Figure 6a shows zD(z,w) as a function of Re(z) =a®/a for w=0.4 and w=0.8. The
horizontal lines are asymptotes for a®/o— 00. They represent the first-order approximations
referred to above.

Preparatory to the analysis of Einstein’s light-scattering formula in §7 we now discuss
depolarized scattering more generally. We first classify terms according to their dependence on
polarization. This allows us to account for a class of complicated terms through a correction
factor of Cabannes (1921) type in an approximate way. Such a correction factor was first used
in the present context by Yvon (1937). We shall generalize Yvon’s argument in a
straightforward way to an infinite class of terms and stress the approximations involved.

We consider single scattering in the medium and omit also backscattering. Thus, the effect
of the surface and the contribution of real multiple scattering should be taken into
consideration separately or minimized by the choice of geometry. We use (2.27) and continue
to denote the polarization unit vectors of the incoming and scattered waves in the medium by
@ and O respectively (but note the discussion of ¥ well below (4.12)).

The terms of the double series (2.27) with ¢ = 1 and ¢ = p—1 all contain a factor @-3. Such
terms cannot give rise to depolarization; and if the correlation length is small compared with
the wavelength, single cluster terms of the type considered will have the form

A(-D)?, (6.15)

in which 4 is a constant. However, multi-cluster terms may give rise to a dependence on the
scattering vector even at small correlation lengths and will not be of the form (6.15). Such
terms appear at fourth and all higher orders in ne.

Next we consider the terms of (2.27) with ¢ = 2 or ¢ = p— 2. Such terms contain an ‘isolated’
propagator F or F* to the right or left of ¢*¢. The small-sphere contribution associated with the
isolated F or F* gives rise to terms of the form (6.15) (with the same qualifications as discussed
above). For small correlation lengths the Coulomb part of the isolated F or F* gives rise to
scattering of the form

B[ (a-9)*+3], (6.16)

in which B is a constant. Again we make reservations as regards a possible small dependence
on the scattering vector which may arise from exchange type terms at fourth and higher orders
even if proper backscattering arising from radiaton parts of propagators is omitted.

To derive (6.16) we first integrate over all orientations of the whole cluster under rotations
around ¥ = x—Xx’ in which x and x” are the arguments of the isolated F or F*. In a subsequent
integration over all orientations of  we come to deal with the average of (37— U) 7 (because
the average of 3/#—U vanishes), and the result is (6.16).

Terms of (2.27) with 3 < ¢ < p—3 (that appear at p > 6) are not of the form of either (6.15)
or (6.16). The same applies to the multi-cluster terms which appear at orders p > 4. Now
suppose that the contribution of all such terms can be neglected. Then we may express the
depolarization ratio p in terms of 4 and B or alternatively express B in terms of 4 and p:

p=3B/(A+4B), B=pA/(3—4p). (6.17)
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We may therefore express the scattering and in particular the total scattering cross-section in
terms of 4 and p:

O = STA(3+6p)/(3—4p) = EnAC(p). (6.18)

The correction factor C(p) accounts for the contributions of the terms of the form (6.16). We
shall refer to C(p) as the Cabannes factor and we call terms of the form (6.16) Cabannes terms.

Note that (6.18) differs slightly from the original factor introduced by Cabannes (1921) who
considered the scattering from a thin gas of anisotropical molecules.

By introducing a Cabannes factor all the infinity of Cabannes terms, that is all terms with
g=2or ¢g=p—2 in (2.27) are summed by expressing them in terms of the sum of all the
infinity of non-depolarizing terms. We sum the non-depolarizing terms in § 7. Unfortunately no
such device expressing microscopic terms in terms of macroscopic quantities seems available for
the remaining (infinite) sets of scattering terms with 3 < ¢ < p—3; but these remaining terms
are O(n°«®) and therefore typically small.

7. THE EINSTEIN LIGHT SCATTERING FORMULA

We now use the microscopic theory to analyse the validity of the macroscopic light scattering
formula of Einstein (1910),

4 2\ 2
TzTE:é%(néénn—) Kpkg T. (7.1)
This analysis has already been reported in brief (Bullough et al. 1968; Bullough & Hynne
1968). But we are now in a position to state the result with greater precision, and to give the
details of the argument.

We compare the exact microscopic expression for the extinction coefficient 7 with the exact
microscopic expression for Einstein’s approximation 7y to 7. We work from the expression (I
5.25) with (2.13) for the refractive index, namely

m*—1 s
— » 2
w2 M), (7.2a)
M, = V| Tr L L Fia-Fag oo Foporypt o Higg X, ... dx,. (7.20)

So we calculate 7 by taking the imaginary part of (7.2a) using

4wk, m?—1
T = Re{m}Im{ in }, (7.2¢)

and we calculate 7 from the same equation (7.2 4, b) by differentiation with respect to density.

The result is given in diagrammatic notation in figure 7. Here and in figure 8 a row of dots
symbolizes a factor 3m 'k;® Im (F) and terms with a coefficient of 2 are to be understood as a
sum of two equivalent terms in an obvious way. The series () and (¢) of figure 7 should actually
be understood as their real parts. (In the following we shall refer to the equations of figure 7
by the letters marking them.) Originally the expansion (a) is governed by the H functions
(2.14). But in the second form of (a) we have screened the single imaginary part propagator

24 Vol. 330. A
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lfe"("") Im [o4o+o+rorpte—o—p-] = ik [a,+a+a+...] (a)
B = 0-042Q+0-9+ 2009+ 20009 +2 b gD+ (b)
G, = QH-0-04+p+Q—brip 04 q—0-0—p4- A JMnaL e+0--9+ Cabannes terms ()

________________________

2
Ty = ks n’Kkr kg {aﬂ [o+o—n—o+o—+—o4—9+q—-o——-9+ ]} /(,@”_)=;nk;£"_éﬁ_/(d)

== 3Bu oo
| == 0-0x% [0-0 4 20+0-0 $2Q+0+0- o+2¢79_—_9__9+2qz<§_%'5“‘b... ] ()
4y = qro-px[ero-p4 ] ximnw oo x [oro-p+-] )
o-o0= g’ oy _ (na)’kpks T (g)

= opufe = (o er e
i_ m'—1 =o' [o- 0+Q+0-94Qq+0+0- 9+¢:B:o 9+Q_é_9'—__‘},+ ‘) (h)
pul. an ) T e e e

Figure 7. Diagrammatical representation of the exact series for the extinction coefficient (a) and Einstein’s
approximation to it (d), used to determine the accuracy of the Einstein formula.

in each of the terms shown. As a result the factor 1/Re (m) is cancelled by a factor Re (m) from
Im (F), and the correlation functions remaining are precisely the K functions (2.28). (We shall
give the details below.)

The result (a) with (b) and (¢) is an expression for the extinction coefficient up to the fourth
order, and before we compare it with Einstein’s approximation to it (equation (d) with (¢) and
(f)) we shall show that it is consistent with scattering in the medium, (6.1). We can get the
total scattering cross section per unit volume for scattering in the medium by summing (6.1)
over two orthogonal polarization unit vectors @ (contained in S as defined by (4.15 b)) and
integrating over all directions of k. The radiator S is then replaced by

S S(x,x';k,6,) dQ = 4nk; Im {F(x, x"; 0)}. (7.3)
Jj=1,2
Equation (a) (second form) with (5) and (¢) then follows. (The result (7.3) is a straightforward
generalization of (2.23) and is valid if and only if the refractive index is real; compare (5.47)
and the direct argument for (a) with () and (¢) given below.)

We now come back to the proof of the Einstein equation (7.1) and we first compare the
results (a) and (d). Subsequently we explain how these results are derived and describe the
qualifications on the formula (7.1) and its extension, equation (7.5) below.

In (a) and (d) 7 and 7 are rewritten in terms of a common factor $7k; so we must compare
the series a;+a,+a;+... in (a) with the ratio with numerator A, +4,+A;+... in (d).
Equations (¢) and (f) show that the denominator is a factor of each of the terms 4, and 4, of
the numerator, and apart from the Cabannes terms the ratios are equal to ¢, and a, respectively
provided we ignore the row of dots in one diagram (times two) of (b); we come back to this
problem shortly. Thus we have up to fourth order in ne

a, = A4,/a,,, (7.44a)
ay = A,/a,;+ Cabannes terms, (7.40)
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in which a,, denotes the diagram in the denominator of (4). This result immediately proves the
simple Einstein formula (7.1) up to neglect of terms of fourth order in the small parameter na;
the Cabannes terms start at fourth order and g, starts at sixth order.

Recall from §6 that the Cabannes terms are so called because the corresponding scattering
terms have the dependence on polarizations (#,d) given by equation (6.16); in contrast, all
others terms from (7.2) correspond to scattering terms of the form (6.15). We can therefore
include the Cabannes terms in the Einstein formula up to fourth order in na simply by
correcting equation (7.1) by the Cabannes factor C(p) defined in (6.18), to get

4 2\2
TR g—;’t(n%) Kpkg T%. (7.5)
In this step we have used the argument leading to (6.18).

We now discuss the the derivations of (a)—(f). To obtain (a) with () and (¢) we ignore terms
with more than one imaginary part propagator, Im {F}. The single Im {F} in each bulk term is
now screened by summing all its non-damping screening terms and using (5.47). As a result
the factor 1/Re{m} of the first form of (a) is eliminated by the factor Re{m} of the first term
of (5.47). This elimination applies to all terms where the screened Im {F} is covered by an Ursell
function, which is short range: here the first term of (5.47) can be approximated by the
constant 2Re{m} k3 up to terms of relative order O((k,/)?). This approximation is good when
the correlation length / is small compared with a wavelength, i.e. when £,/ < 1. It does not
apply to fluids near the critical point of phase separation.

Note that in the last term of (5) the Im {F} cannot be replaced by a constant because it is not
covered by an Ursell function; and as a factor 2Re {m} k3 has been extracted from the term the
reciprocal of this factor must appear explicitly, concealed in an ad hoc diagrammatical element,
a row of dots.

Note also the last term to the left of (¢). This is a screening term of the second term on the
left side of (a), but because it is a damping term it does not contribute to the elimination of the
factor 1/Re {m}; it must therefore appear explicitly, accounted for by the second term of (5.47).

Neglect of terms of relative order O((k,[)?) is sufficient to prove the simple Einstein equation
(7.1) up to the third order in no. Proof of the extended version (7.5) requires replacement of
Im (F) by a constant also where the propagator is not covered by an Ursell function. This is
therefore represenfed diagrammatically by the neglect of a row of dots.

In the step to the second form of (¢) we extract small-sphere contributions from one of the two
F propagators because these correspond to non-depolarizing scattering terms of the type (6.15),
and we want to isolate all contributions corresponding to depolarized scattering in the form
(6.16) to apply the argument of Cabannes and Yvon. Note that the small-sphere contributions
of the second and third terms of (¢) containing a product of two two-body Ursell functions are
cancelled by a similar term from the first term on the left side of (¢). We still have to omit the
radiation part of the one F propagator for which we extracted the small sphere contribution
since these terms correspond to depolarized scattering in non-Cabannes combination. This
means neglect of real double scattering and backscattering. Thus, the Einstein formula
describes macroscopic single scattering. This concludes the derivation of (a) with (b) and (¢)
for the extinction coefficient.

For the Einstein expression we first rewrite the differentiation with respect to n as a
differentiation through fu = u/ (ks T') in which u is the chemical potential a molecule in the

24-2
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fluid. (In the present context £ always appear in the combination fu so there is no risk of
confusion with the effective polarizability.)

In the step to the second form of (d) we first use the relations (g) to cancel the factor
n*kpky T and to introduce the two-body diagram. The first of the relations (g) is a special
case of (7.6) below, whereas the second equality is a well known thermodynamical relation.

The numerator in the second form of (d) is obtained by doing the indicated differentiation
with the use of the recurrence relation for generalized Ursell functions %,,5  , = n?U,,y3

OU.
(W) - f Ty, oy A%y, (1.6)

The relation (7.6) can be derived from the recurrence relation for generalized Ursell functions

. . e . o o
in terms of generalized distribution functions, 4,5, = #°Ga5 , = %,

G = 2 H Uy, (7.7)

together with the recurrence relation

sl [%pr11— %] A%, (7.8)
(%ﬂ) f

which can be derived from the definition of the generalized distribution functions in the grand
canonical ensemble, compare with Percus (1964). The sum of equation (7.7) is taken over all
partitions £ of the index set [p] = (1,2,3,...,p). The recurrence relations (7.6) and (7.8) have
been obtained by Lebowitz & Percus (1963) in the form of functional differential relations.

The derivative of the (m*—1)/47n to be squared in (d) is given by (k). Notice in particular
that the three-body surface term (the last term in square brackets in (d)) contains the product
of a one-body and a two-body Ursell function and hence gives rise to two terms upon
differentiation.

The square of the series (%) can be arranged as a sum of series each containing a single square
plus an infinity of double products, all with a common factor as in equations (¢) and (f). In
the step to the second form of (f) we extract the small-sphere contribution from the common
factor, and ignore the remaining part, which is of relative order O((k,1)?).

This completes the transformation of the Einstein expression, and the proof of equations
(7.1) and (7.5) up to third and fourth order in ne respectively. For simplicity we have only
displayed the terms actually needed up to fourth order; but the proof of equation (7.5) extends
to including the fifth order in no within the same type of approximations. Figure 8 exemplifies
the terms referred to in the following summary of the proof.

The series a; has 24 terms in (na)® as 2 x 6 bulk terms plus 2 X 6 surface terms. Figure 84
shows examples. These 24 terms are one to one identical with 24 terms contained in 4,. The
series a, contains 22 terms (exemplified in figure 85) as 2 x 6 bulk terms plus 2 x 5 surface terms,
of which the 2x3 terms shown in brackets in figure 8¢ are damping terms discussed in
§5 (f). Up to neglect of O((k,1)?), these 22 terms of a, can be written as a sum of Cabannes
terms and six fourth-order terms, all multiplied by $mna. These six terms are also contained
in 4,. (They are in fact the fourth-order terms shown within brackets in 4, in figure 7e).

There is an interesting problem associated with the damping terms: initially the two terms
of figure 84 also remained uneliminated by the factor 1/Re (m) together with the six damping
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as = Q—o—o—o-o---o-o—o-o—? * e Q:_.é'_qp_b_..p + e (e)

Ay = Ay X [An+ ], Ay = +0+0-0 + 000 + ¢—E— O )

. oo S —

§ — Ficure 8. Higher terms of the series for 7 and 75 shown in figure 8.

OH

o = . .

" 5 terms of figure 8¢. Moreover, all damping terms are really screening terms, and hence not
T O automatically screened themselves. Thus, they should appear with a factor 1/Re (m) in figure
~ o 7¢ (and also in figure 8¢, d if we are concerned about orders higher than five).

Notice, however, that the two terms in surplus at order five (figure 84) have a structure that
lets them serve as screening terms for the fourth-order damping term. (They participate in the
screening of Im (F).) Therefore these spare terms contribute to the elimination of the factor
1/Re (m) in the fourth-order damping term and for the same reason they are themselves
eliminated after all.

PHILOSOPHICAL
TRANSACTIONS
OF

The terms at order six contribute to the series a, and 4, as well as to a;, a,, 4, and 4,, see
figure 8¢, f. The terms of a, contain non-Cabannes depolarization even from the Coulomb
parts of the propagators (or rather the corresponding scattering terms do). These contributions,
therefore, cannot be accounted for by a Cabannes correction factor; and because they are not
contained in the Einstein scattering formula itself, we conclude that even the extended formula
(7.5) fails at order six in na. Although the agreement thus breaks down elsewhere at order six,
it is significant that the relation (7.4a) holds at all orders in na when Im (F) is replaced by
2Re (m) kj. The proof of this result is rather complicated so we omit it. This concludes the
derivation of the generalized Einstein light scattering formula.

There are three uncertain steps in the preceding evaluation of the Einstein equations. First,
there is the substitution of 2Re (m) 3 U for Im (F) when this propagator is not Ursell covered.
Secondly, we had to replace one propagator F by its Coulomb part VVr! in the depolarizing
terms. Thirdly, the elimination of the factor 1/Re(m) took no account of the possible
contribution of the eliminated screening terms to the depolarization (although the main
contribution probably comes from the damping terms which remain). Finally, we must admit
an uncertainty of the precise numerical significance of the various terms. The complexity of the

multiple integrals containing higher-order correlation functions has restricted us to an
evaluation in terms of orders of magnitude in the small parameters na and £, /.

THE ROYAL A
SOCIETY LA

Nevertheless, the matching of the multitude of terms of distinctly different origin in the series
for 7 and 7y is certainly striking, even regarded as a formal relation. From this (real and
formal) agreement we conclude that the Einstein light scattering equation (7.1) and its
extension (7.5) are well founded in microscopic theory. Note, in particular, that even the
simple Einstein equation correctly includes all the infinity of terms a, as well as all other non-
depolarizing terms up to neglect of O((ne)®). It is significant here that experiments show the
depolarization ratio to be small in general, compare with §6.
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It would seem natural to extend the analysis to the phenonological theories of the differential
scattering cross section initiated by the work of Ornstein & Zernike (1914, 1918). But recall
that we had to neglect terms O(k,/)?) in the analysis of the extinction. This fact implies that
the Ornstein—Zernike result can hardly be proved beyond the lowest order, in the interesting
case where the cross section depends on the scattering direction.

8. SUMMARY AND CONCLUSION

The paper provides a comprehensive microscopic theory of the incoherent light scattered
from a molecular fluid. It is based on previous work in which a classical many-body theory of
the refractive index and dielectric constant is developed. The theory is therefore linear, classical
in terms of molecular polarizabilities and correlation functions, and quasistatic. Within these
terms an essentially exact analysis is given.

The theory generates classes of microscopic multiple scattering processes of arbitrary order.
From these microscopic processes all of the expected macroscopic features of external optical
scattering are derived. Because subtle surface effects appear inevitably in the theory anyway,
the model system is deliberately chosen to approximate as closely as possible to the physical
situation in a realizable scattering experiment. Thus an external (weak) coherent field is
incident upon a spatial region V containing the homogeneous molecular fluid of particle
density n and temperature 7°: Vis finite but otherwise arbitrary. The scattered field is analysed
at a collector outside V. All macroscopic features expected at the surface of V, namely refraction
and reflection of the incident light, and its attenuation inside V, as well as refraction, reflection
and attenuation of the scattered field emerges naturally, but non-trivially, from the microscopic
theory.

The boundary conditions adopted are simply outgoing boundary conditions at infinity on
each individual scattering process. The collective action of these produces the different
macroscopic features mentioned : no phenomenological features or boundary conditions at the
surface of V are imposed. The following are particularly significant results.

1. A complete theory of macroscopic single scattering derived from all-order microscopic
multiple scattering.

2. Sufficiently detailed analysis of macroscopic single scattering at low density from which
it should be possible to make quantitative comparison with experiments: comparison is made
for the depolarization ratio.

3. Summation of certain microscopic multiple scattering processes, in part to all orders, in
part to lower orders, to produce a generalized form of Einstein’s phenomenological results for
macroscopic single scattering; demonstration that the result cannot be applicable to critical
scattering.

4. Identification of certain ‘backscattering coherence’ within the microscopic theory. This
should give rise to back-scattering enhancement observable in an experiment done close
enough to a critical point of phase separation.

5. A theory of macroscopic multiple scattering which emerges naturally from the complex
of multiple scattering in the microscopic theory.

6. Demonstration that the geometrical corrections that sometimes are made when
experimental light scattering results are interpreted to provide ‘absolute measurements’ rest on
a firm theoretical basis: the theory provides a precise interpretation.
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These many results all emerge from the unified molecular scattering theory. They are
achieved by showing that the total scattering process can be naturally and rigorously divided
into a scattering process in the medium plus two transition processes, which account for the
coupling of waves in the medium with external waves in vacuum. Thus the scattered flux is
expressed (equation (5.3)) as a functional of two fields & and & (describing the scattering
process in the medium) together with two equations (3.14) and (4.1) (separately determining
& and ¢ and describing the two transition processes).

The field & is the average field of the incoming wave in the medium whereas ¢, called a
weight field, may be said to represent the outgoing wave in the medium, and the scattered flux
(56.3) is quadratic in both & and ¢&. Equation (3.14) then relates & to the actual incoming (weak,
coherent) field E incident on V. Similarly, the other equation associated with (5.3), equation
(4.1), relates ¢ to a field e, defined by (4.2), which accounts for the analysis of the scattered light
in terms of its direction, its polarization, and in terms of externally imposed stops, which in any
real experiment will restrict its aperture. Thus the procedure allows a fairly detailed analysis
of the scattered light. (However, if the scattering is not analysed for polarization and the
scattering from the entire region V is observed, for example, one must simply replace the
quadratic combination k3 e*e by the ‘radiator’ (2.185) to get the scattered flux as a function
of scattering direction.)

The kernel of the functional (5.3), or the operator .# that it defines, describe all of the
internal scattering. Equation (3.8) with the definitions (5.2) and (5.5) show how .# generates
all macroscopic multiple scattering (through iteration of (5.4)) from the internal microscopic
scattering. In particular the first term of the multiple scattering expansion (3.8) of .# describes
macroscopic single scattering represented by the operator £ with kernel (5.5). In this way the
theory allows a separate study of macroscopic single scattering.

Note that . is entirely independent of the arrangement of the source and the detector. And
it is independent of the scattering geometry: except for an explicit dependence on the geometry
of the region V containing the fluid. Thus (5.3) shows how the scattering process in the medium
has been isolated from those describing the incoming and outgoing waves.

Equation (3.1a) describing the entrance of the incoming wave into the medium and (4.1)
describing the exit of the outgoing (scattered) wave from the medium have exactly the same
mathematical form. Equation (3.1a) is the linear response relation (I 3.2) for the average field
& induced in the medium by the external field E. It was solved in part I by an argument
involving the ‘extinction theorem’ of Ewald (1912, 1916) and Oseen (1915). Equation (4.1)
differs from (3.14) only by the form of the source terms. In (3.14) E can be any free transverse
electromagnetic field of wavenumber £y = w/c. But the source term e of equation (4.1) must
have the form (4.2) of a free transverse plane wave coming from the direction of the detector
(possibly restricted by stops). Nevertheless the weight field & can be viewed as the response to
a fictitious wave e from the detector: an ‘inverse’ response.

Such formal similarity expresses a kind of reciprocity principle, and because of it the
behaviour of the scattered wave at the surface can be handled by familiar techniques. Thus a
version of the extinction theorem applies to the scattered light that can be seen to refract and
exhibit (multiple) internal reflection at the surface of V' (as illustrated in figures 1 and 2). All
of this is demonstrated explicitly in §4 solely on the basis of the microscopic theory. All
collective surface effects are accounted for and even quantitatively. Thus we find loss of
intensity in transmission and reflection, specific dependence on polarization, and a
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transformation of the effective differential scattering solid angle between that in the medium
and that in the vacuum. Thus for example equation (4.11) (and the discussion following it)
shows up all of these features. Only the simplest term of .# is actually considered in (4.11) but
the results are not limited by this simplification. And all of these macroscopic behaviours have
come from the microscopic theory: the refractive index m in (4.11) is that calculated in part
IT in a consistent use of the microscopic theory.

Although it is the microscopic theory itself that generates all of these results it is helpful to
interpret them in particular cases by appeal to the ideas of macroscopic optics through the
inverse response idea. This way arbitrary geometry can be handled. For example, we infer the
existence of a lens effect for scattered light in the situations described in figure 3. Most aspects
of the collective surface effects associated with the scattering agree exactly with what one would
intuitively expect but one must not of course identify the weight field & or the field e as in any
sense scattered fields.

The scattering of light in the medium is described by the operator .# defined (implicitly) by
the representation (2.27) of the relation (5.3). This depends on the geometry of V' and a
significant part of this dependence is explained in terms of the macroscopic multiple scattering.
The macroscopic multiple scattering consists of processes by which intensity is thrown between
clusters of molecules, a result of the expansion (3.8) of the operator .# obtained by iterating
(5.4). That expression (5.4) explains how our operators are used: the operator & there is the
pair of propagators (5.2), whereas £ is given explicitly by (5.5) (the Y functions are given by
(2.39) or by (I 4.11) more generally).

The resulting series (3.8) is evidently a sensible multiple scattering expansion. Each term of
it has the character of scattering processes £ connected with propagations &. Propagations are
long range (though note the discussion in §5 (¢)) whereas the processes £ are short range (up
to back scattering and generalizations). The series expansion successfully distinguishes multiple
scattering from backscattering (which is reviewed below) : this is also long range but does not
otherwise have evident multiple scattering character. These differences were analysed in §5 (d).

The series (3.8) is based on the relation (2.41) between the special propagator & (called a
radiator) and the quantity &’ = k2&*¢, and its status as a macroscopic multiple scattering
expansion derives from this relation. Each of & and &%’ describes a radiated flux (asin (2.31));
but & describes an average flux, whereas &’ describes the corresponding flux of an average
field. The relation (2.41) shows that & differs from &’ by a term containing the scattering
kernel o, and this implies that & includes multiple scattering in a natural way. Macroscopic
multiple scattering is therefore generated by iteration of equations (3.1¢) and (3.14) or of the
resulting equation (5.4) for scattering in the medium. Each of & and %’ plays a vital role in
the theory, whereas the multiple scattering expansion appears in an entirely natural way: it is
certainly not constructed ad hoc. We return to this below.

The theory contains processes exhibiting back-scattering coherence, which give rise to a
sharp peak of scattering in a direction opposite to that of the incoming wave. Such processes
are analogous to those appearing in theories of scattering from suspensions of dielectric particles
where back-scattering enhancement has been demonstrated experimentally (Kuga & Ishimaru
1984). But the phenomenon has not previously been recognized in microscopic scattering
theory, and back-scattering enhancement from homogeneous media has not been observed
experimentally. We suggest in §5(d) that it should be possible to detect it experimentally in
critical scattering from simple fluids; or (by generalization) from binary mixtures.
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The multiple-scattering expansion (3.8) treats back scattering as part of macroscopic single
scattering and hence automatically distinguishes it from macroscopic multiple scattering.
Despite their close similarity of form (compare 5.1254) with (5.19) or compare (5.14) with
(5.21)) the two classes of scattering are physically very different in their dependence on the
scattering direction and on the scattering geometry; §5(d) explains this.

Scattering of light in the medium, totally described by the operator .#, is a very complex
process exhibiting macroscopic multiple scattering and back scattering. Despite this complexity
the collective surface effects described through & and & keep their particular (and simple)
significance for all parts of the scattering process. For example, scattering reaching the detector
from a multiple scattering process exhibits refraction at the surface in exactly the same way as
does a contribution to single scattering. Macroscopic multiple scattering and backscattering
processes are simply superimposed on the multi-mode pattern established by & and &. Figures
1¢ and 5a, 5¢ illustrate this fact by showing contributions from single, double and triple
scattering for the same scattering geometry.

When we come to numerical evaluation and to a comparison with experiments and with
macroscopic models it has been necessary for sufficient simplicity to limit the scope to local
macroscopic single scattering only. Thus in §6 we expand the scattering cross section in a low
density series (6.2a) and calculate the coefficients up to the second order. The one-body term
is trivial, but the two-body term is not. The result (6.5) with (6.4) and (6.6) is obtained in an
approximation where propagators are replaced by their Coulomb parts and phase factors are
ignored.

Two-body terms involve only pair correlations and up to the second order in the density
these are completely determined by the pair potential. We have calculated the two-body terms
for a Lennard-Jones potential. The result is (6.5) with the functions 4, and d, given by (6.7)
and (6.8) respectively. This result is shown to agree with the extinction coeflicient calculated
in part II from the refractve index in a similar approximation. The resulting low density form
of the depolarization ratio, (6.11), is a function of the complex polarizability (2.17) and the
temperature 7 through the two reduced variables ¢®/y and T,/ T, where a and kg T, are
Lennard-Jones parameters specifying the minimum of the intermolecular potential curve (II
3.12). Figure 6 shows the function D and table 1 compares with experiments.

As another specific application of the microscopic theory we have analysed in §7 the
phenomenological light scattering formulae of Einstein (1910). The conclusion is that the
Einstein formula is an approximation to macroscopic single scattering without back scattering.
It is correct, as such, up to neglect of terms of order four in na and order two in £, /. So it is
most applicable to the scattering from fluids of low density and small correlation lengths.

If the formulae are corrected by a Cabannes factor expressed in terms of the depolarization
ratio (as first suggested by Yvon (1937)) the generalized formulae are valid to neglect of terms
of order six in the polarizability density na: apart from a small discrepancy. (The
phenomenological formulae lack one propagator in terms related to the omitted backscattering
terms.)

The specific conclusions summarized above in the present section depend on more technical
results expressed in terms of a number of quantities: scattering operators .4 and Z; fields &
and &; propagators & and & (together with their unscreened counterparts F and S); and
kernels A and 6. It has been necessary to introduce all these objects because of the complexity
of the problem; but it is also because it is instructive to exhibit, and indeed exploit, the close
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relations that exist between the theory of refractive index and the theory of scattering as derived
from the same unified microscopic theory. Because the interpretation of the theory in terms of
macroscopic ideas partly derives from relations among the objects mentioned it may be useful
if we summarize here these relations as well as the meaning of the objects involved. We review
them from the standpoint of the final theory so the line of argument here is partly the reverse
of the one presented in the derivation given in the text.

The most important new objects of the scattering theory are the weight field, &, and the single
scattering operator, . The weight field describes the behaviour of scattered light at the surface
and is essential to the theory. The single scattering operator describes macroscopic single
scattering in the medium from which multiple scattering can be obtained by combining several
& with pairs of propagators & *& . In this way the entire scattering in the medium, ., can
be built as in (3.8) where & denotes & *% .

The single scattering operator . has a simple structure (5.5), and plays a more fundamental
role in the theory than the operator .# for the complete scattering. Thus it is an interesting fact
that £ (and not .#) is closely related to the susceptibility kernel A of the refractive index
theory. (In the series expansion (5.5) of & each of the p terms at order p+1 (in na) are
governed by the same (p+ 1)-particle correlation function Y, and this common correlation
function is identical to the one appearing at the same order in the expansion (II 4.2) of A).

The reason for the status of £ is the following. Although £ describes single scattering when
combined with & as in (3.9) or (5.6) it can also describe the complete scattering in a very
natural way when it is combined with & . The radiator & has some character of a propagator,
so it is possible to focus on a ‘field description’ in terms of & or a ‘propagator description’ in
terms of &. And because the refractive index theory contains no field analogous to ¢ it is the
propagator point of view that is the more fruitful one in a comparison between the two theories.
We summarize that comparison now.

The weight field & appears in the scattering theory in the combination &’ = k3g*e.
Superficially this might be thought of as a propagator. (Recall that it differs from & by a
decorrelation, & being the average of a product (2.32) whereas &%’ is the corresponding
product of averages (2.30).) The important point, however, is that although & is an important
object and the natural counterpart of the incoming field &, it is & (rather than &) that is the
more natural propagator and counterpart of % . This fact is evidenced by the similarity of their
expansions, (2.37a) with (2.20) for & against (2.35) for &, and also by the fact that & and
& are connected by a Bohr—Peierls—Placzek type relation analogous to (2.23). When &, (5.5),
is combined with & to give the scattering kernel 6, (3.1¢), the radiator & fits naturally into
the gap in the chain of propagators & * or & in #, and as a result ¢ expressed in terms of &
and & has a strucure very similar to that of the susceptibility kernel A.

This close relation is expressed by the formal relation (2.22). It represents (2.21) with (2.20)
in the unscreened formulation or (2.384) with (2.384) in the screened one. (Compare these
expressions with (2.13) and (IT 4.2) respectively for A. Equation (II 4.2) for A is exhibited
in a diagrammatical notation in figure 44 which should be compared with figure 44 for 6.) The
close relation between ¢ and A (and hence between £ and A) manifests itself in the
Bohr—Peierls—Placzek type relation (2.24) between ¢ and A and this is analogous to (2.23)
between S and F or to (I 4.26) between & and & .

All these technical results confirm the significance of the radiator & and the uniqueness of
the expansion (3.8), and hence substantiate the interpretation of (3.8) as a macroscopic
multiple scattering expansion. (See also the discussion of damped propagation in §5 (f).)


http://rsta.royalsocietypublishing.org/

;]1
S
o[—<
A
)
= O
= uw

PHILOSOPHICAL
TRANSACTIONS
OF

THE ROYAL A
SOCIETY /A

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

THE SCATTERING OF LIGHT. III 311

Thus in summary of the two alternative formulations: our formulation of the scattering
theory in terms of the weight field wholly solves the problem of deriving the collective refraction
and reflection of the scattered light from the microscopic theory. But the alternative
formulation in terms of the specific propagator & emphasizes the close relation between the
refractive index theory developed earlier and the scattering theory. The two formulations
together generate a complete and wholly satisfactory description of macroscopic multiple
scattering in terms of microscopic scattering events. And the natural way every part fits in the
unified theory strengthen our confidence in the interpretations in macroscopic terms we have
made.

The conclusion is that the microscopic theory is shown to generate all of the macroscopic
aspects of external scattering to be expected. A theoretical structure has been created to make
the transition from microscopic scattering events to macroscopic scattering, which models a
real experiment. It thus seems to be possible now to embark on particular numerical
simulations in the confidence that ‘what is going on’ (at whatever level of understanding) can
completely be determined by a consistent application of the theory.

Future extensions of the theory can go in several directions, particularly to nonlinear and
quantum mechanical descriptions. Thus the quantum theoretical basis of the theory, as it was
briefly sketched by Bullough et al. (1968), is now developed to a point (Bullough & Hynne
1990) where it shows specific quantum (rather than only classical) features. In recent jargon
this is a detailed many-body theoretical treatment of the linear ‘attenuator’ defined as such by
Louisell (1964) (and cf. Sargent et al. 1974; Lamb 1971). The same formalism describes
equally well the linear ‘phase insensitive amplifier’ (Louisell 1964 ; Sargent ef al. 1974); and,
for example, the papers by Glauber and others in Tombesi & Pike (1989). There is a rich field
for further many-body theoretical endeavour, necessarily quantum based, in these various
problems.
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